欢迎来到天天文库
浏览记录
ID:57065926
大小:107.00 KB
页数:16页
时间:2020-07-30
《相似多边形的性质ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、八年级数学(下册)第四章相似图形相似多边形的性质(1)●教学目标(一)教学知识点相似三角形对应高的比,对应角平分线的比和对应中线的比与相似比的关系.(二)能力训练要求1.经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似多边形的性质.2.利用相似三角形的性质解决一些实际问题.(三)情感与价值观要求1.通过探索相似三角形中对应线段的比与相似比的关系,培养学生的探索精神和合作意识.2.通过运用相似三角形的性质,增强学生的应用意识.●教学重点1.相似三角形中对应线段比值的推导.2.运用相似三角形的性质解决实际问题.●教学难点相似三角形的性质的运用.
2、●教学方法引导启发式、多媒体辅助教学.创设问题情境,引入新课在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三角形是相似多边形中的一种,因此三对对应角相等,三对对应边成比例.那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将进行研究相似三角形的其他性质..做一做钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,如图4-38,图纸上的△ABC表示该零件的横断面△A′B′C′,CD和C′D′分别是它们的高.(1)、、、各等于多少?(2)△ABC与△A′B′C′相似吗?如果相似,请说明理由,并指出
3、它们的相似比.(3)请你在图4-38中再找出一对相似三角形.(4)等于多少?你是怎么做的?与同伴交流.议一议已知△ABC∽△A′B′C′,△ABC与△A′B′C′的相似比为k.(1)如果CD和C′D′是它们的对应高,那么等于多少?(2)如果CD和C′D′是它们的对应角平分线,那么等于多少?如果CD和C′D′是它们的对应中线呢?请大家互相交流后写出过程.由此可知相似三角形还有以下性质:相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.例题讲解如图,在等腰三角形ABC中,底边BC=60cm,高AD=40cm,四边形PQRS是正方形.(1)△A
4、SR与△ABC相似吗为什么?(2)求正方形PQRS的边长..课堂练习如果两个相似三角形对应高的比为4∶5,那么这两个相似三角形的相似比是多少?对应中线的比,对应角平分线的比呢?如图,CD是Rt△ABC的斜边AB上的高.(1)则图中有几对相似三角形.(2)若AD=9cm,CD=6cm,求BD.(3)若AB=25cm,BC=15cm,求BD.课时小结本节课主要根据相似三角形的性质和判定推导出了相似三角形的性质:相似三角形的对应高的比、对应角平分线的比和对应中线的比都等于相似比.作业习题4.10.1、2预习P132-135活动与探索如图4-42,AD,A′D′
5、分别是△ABC和△A′B′C′的角平分线,且==你认为△ABC∽△A′B′C′吗?结束寄语培养回顾联想已学知识,探索学习后续知识的能力,可使每个有自信心的人到达希望的顶峰.下课了!再见
此文档下载收益归作者所有