高数同济六版课件D3习题课.ppt

高数同济六版课件D3习题课.ppt

ID:56991483

大小:1.18 MB

页数:32页

时间:2020-07-25

高数同济六版课件D3习题课.ppt_第1页
高数同济六版课件D3习题课.ppt_第2页
高数同济六版课件D3习题课.ppt_第3页
高数同济六版课件D3习题课.ppt_第4页
高数同济六版课件D3习题课.ppt_第5页
资源描述:

《高数同济六版课件D3习题课.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二、导数应用习题课一、微分中值定理及其应用中值定理及导数的应用第三章9/2/2021高数同济六版拉格朗日中值定理一、微分中值定理及其应用1.微分中值定理及其相互关系罗尔定理泰勒中值定理柯西中值定理9/2/2021高数同济六版2.微分中值定理的主要应用(1)研究函数或导数的性态(2)证明恒等式或不等式(3)证明有关中值问题的结论9/2/2021高数同济六版3.有关中值问题的解题方法利用逆向思维,设辅助函数.一般解题方法:证明含一个中值的等式或根的存在,(2)若结论中涉及到含中值的两个不同函数,(3)若结论中

2、含两个或两个以上的中值,可用原函数法找辅助函数.多用罗尔定理,可考虑用柯西中值定理.必须多次应用中值定理.(4)若已知条件中含高阶导数,多考虑用泰勒公式,(5)若结论为不等式,要注意适当放大或缩小的技巧.有时也可考虑对导数用中值定理.9/2/2021高数同济六版例1.设函数在内可导,且证明在内有界.证:取点再取异于的点对为端点的区间上用拉氏中值定理,得(定数)可见对任意即得所证.9/2/2021高数同济六版例2.设在内可导,且证明至少存在一点使上连续,在证:问题转化为证设辅助函数显然在[0,1]上满足罗尔

3、定理条件,故至使即有少存在一点9/2/2021高数同济六版例3.且试证存在证:欲证因f(x)在[a,b]上满足拉氏中值定理条件,故有将①代入②,化简得故有①②即要证9/2/2021高数同济六版例4.设实数满足下述等式证明方程在(0,1)内至少有一个实根.证:令则可设且由罗尔定理知存在一点使即9/2/2021高数同济六版例5.设函数f(x)在[0,3]上连续,在(0,3)内可导,且分析:所给条件可写为(2003考研)试证必存在想到找一点c,使证:因f(x)在[0,3]上连续,所以在[0,2]上连续,且在[0

4、,2]上有最大值M与最小值m,故由介值定理,至少存在一点由罗尔定理知,必存在9/2/2021高数同济六版例6.设函数在上二阶可导,且证明证:由泰勒公式得两式相减得9/2/2021高数同济六版二、导数应用1.研究函数的性态:增减,极值,凹凸,拐点,渐近线,曲率2.解决最值问题目标函数的建立与简化最值的判别问题3.其他应用:求不定式极限;几何应用;相关变化率;证明不等式;研究方程实根等.4.补充定理(见下页)9/2/2021高数同济六版设函数在上具有n阶导数,且则当时证:令则利用在处的n-1阶泰勒公式得因此时

5、定理.9/2/2021高数同济六版的连续性及导函数例7.填空题(1)设函数其导数图形如图所示,单调减区间为;极小值点为;极大值点为.提示:的正负作f(x)的示意图.单调增区间为;9/2/2021高数同济六版.在区间上是凸弧;拐点为提示:的正负作f(x)的示意图.形在区间上是凹弧;则函数f(x)的图(2)设函数的图形如图所示,9/2/2021高数同济六版例8.证明在上单调增加.证:令在[x,x+1]上利用拉氏中值定理,故当x>0时,从而在上单调增.得9/2/2021高数同济六版例9.设在上可导,且证明f(x

6、)至多只有一个零点.证:设则故在上连续单调递增,从而至多只有一个零点.又因因此也至多只有一个零点.思考:若题中改为其它不变时,如何设辅助函数?9/2/2021高数同济六版例10.求数列的最大项.证:设用对数求导法得令得因为在只有唯一的极大点因此在处也取最大值.又因中的最大项.极大值列表判别:9/2/2021高数同济六版例11.证明证:设,则故时,单调增加,从而即思考:证明时,如何设辅助函数更好?提示:9/2/2021高数同济六版例12.设在上存在,且单调递减,有证:设则所以当令得即所证不等式成立.证明对一

7、切9/2/2021高数同济六版例13.证:只要证利用一阶泰勒公式,得故原不等式成立.9/2/2021高数同济六版例14.证明当x>0时,证:令则法1.由在处的二阶泰勒公式,得故所证不等式成立.与1之间)9/2/2021高数同济六版法2.列表判别.即9/2/2021高数同济六版例15.求解法1利用中值定理求极限原式9/2/2021高数同济六版解法2利用泰勒公式令则原式9/2/2021高数同济六版解法3利用罗必塔法则原式9/2/2021高数同济六版P1825;*7;*8;10(2),(3);11(1);17;

8、20作业9/2/2021高数同济六版备用题1.设函数上具有二阶导数,且满足证明序列发散.证:故序列发散.(2007考研)9/2/2021高数同济六版保号性定理2.设在区间上连续,且试证存在使证:不防设必有使故保号性定理必有使故又在上连续,由零点定理知,存在使9/2/2021高数同济六版3.已知函数内可导,且证:(1)令故存在使即(2005考研)9/2/2021高数同济六版内可导,且(2)根据拉各朗日中值定理,存在使3.已知函数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。