欢迎来到天天文库
浏览记录
ID:56962768
大小:2.13 MB
页数:43页
时间:2020-07-22
《行列式的计算课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一、计算排列的逆序数二、计算(证明)行列式三、克拉默法则典 型 例 题分别算出排列中每个元素前面比它大的数码之和,即算出排列中每个元素的逆序数.解例1一、计算排列的逆序数当为偶数时,排列为偶排列,当为奇数时,排列为奇排列.于是排列的逆序数为1 用定义计算(证明)例2用行列式定义计算二、计算(证明)行列式解评注本例是从一般项入手,将行标按标准顺序排列,讨论列标的所有可能取到的值,并注意每一项的符号,这是用定义计算行列式的一般方法.注意2 利用范德蒙行列式计算例3计算利用范德蒙行列式计算行列式,应根据范德蒙行列式的特点,将所给行列式化为范德蒙行列式,然后根据
2、范德蒙行列式计算出结果。解上面等式右端行列式为n阶范德蒙行列式,由范德蒙行列式知评注本题所给行列式各行(列)都是某元素的不同方幂,而其方幂次数或其排列与范德蒙行列式不完全相同,需要利用行列式的性质(如提取公因子、调换各行(列)的次序等)将此行列式化成范德蒙行列式.3 用化三角形行列式计算例4计算解提取第一列的公因子,得评注本题利用行列式的性质,采用“化零”的方法,逐步将所给行列式化为三角形行列式.化零时一般尽量选含有1的行(列)及含零较多的行(列);若没有1,则可适当选取便于化零的数,或利用行列式性质将某行(列)中的某数化为1;若所给行列式中元素间具有某
3、些特点,则应充分利用这些特点,应用行列式性质,以达到化为三角形行列式之目的.4 用递推法计算例8计算解由此递推,得如此继续下去,可得评注7 用数学归纳法例9证明证对阶数n用数学归纳法评注计算行列式的方法比较灵活,同一行列式可以有多种计算方法;有的行列式计算需要几种方法综合应用.在计算时,首先要仔细考察行列式在构造上的特点,利用行列式的性质对它进行变换后,再考察它是否能用常用的几种方法.小结当线性方程组方程个数与未知数个数相等、且系数行列式不等于零时,可用克莱姆法则.为了避免在计算中出现分数,可对有的方程乘以适当整数,把原方程组变成系数及常数项都是整数的线
4、性方程组后再求解.三、克拉默法则解设所求的二次多项式为由题意得由克莱姆法则,得于是,所求的多项式为一、填空题二、计算下列行列式.有非零解?三、解答题.四、证明五、设行列式求第一行各元素的代数余子式之和测试题答案
此文档下载收益归作者所有