欢迎来到天天文库
浏览记录
ID:56955387
大小:1005.00 KB
页数:40页
时间:2020-07-21
《北师大版高中数学(必修2)1.1《简单几何体》.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一章:立体几何的初步郭旭平本 章 概 述概述:由于在土木建筑、机械设计、航海测绘、空间技术研的研究过程中等,都要涉及到对立体图形的研究,这就使得对立体图形的特征及性质的研究成为必要。对于立体几何这一章的学习方式,我们将以具体的立体图形为背景,特别是以长方体、正方体、圆柱体、圆锥体、圆台体、球体等几何体为背景,通过直观感知、画图确认、思维论证、度量计算等方法,了解简单几何体的基本特征及其直观图、三视图。学习要求:重点理解并掌握空间中的点、线、面的位置关系,并能够用数学符号语言对某些位置关系进行表示和论证,培养和发展大家的空间想象力、推理论证的能力和运用
2、图形语言进行交流的能力。§1.简 单 几 何 体导入:三维空间是人类生存的现实空间,生活中蕴涵着丰富的几何体,请大家欣赏下列各式各样的几何体。§1.1:简单的旋转体问题1:如图所示:已知线段AB垂直于直线L于A点,如果把线段AB绕着点A旋转一周,且在线段AB在旋转的过程中始终与直线L垂直,那么线段AB在旋转的过程中所形成的图形会是什么呢?AABL问题2:如图所示:已知直线AB垂直于直线L于O点,如果把直线AB绕着点O点旋转一周,且直线AB在旋转的过程中始终与直线L垂直,那么直线AB在旋转的过程中所形成的图形会是什么呢?ABLO问题3:如图所示:把半圆O
3、绕着其直径AB所在的直线在空间旋转一周,则半圆O在旋转的过程中所形成的图形会是什么呢?(球面)问题3如果把一个半圆面绕着其直径所在的直线在空间旋转一周,则半圆面在旋转的过程中所形成的图形会是什么呢?(球体)七、球的结构特征O球心半径AB1、球的定义:以半圆的直径所在直线为旋转轴,将半圆旋转一周后所形成的曲面叫作球面。把球面所围成的几何体叫作球体,简称球。连结球心与球面上的任意一点的线段叫作球的半径。其中:把半圆的圆心叫做球心。连结球面上的任意两点且过球心的线段叫做球的直径。2、球的表示:用表示球心的字母表示,如球O请大家想一想怎样用集合的观点去定义球?
4、把到定点O的距离等于或小定长的点的集合叫作球体,简称球。其中:把定点O叫作球心,定长叫作球的半径到定点O的距离等于定长的点的集合叫作球面。问题4:如图所示:把矩形ABCD绕着其一边AB所在的直线在空间中旋转一周,则矩形的其它三条边在旋转的过程中所形成的曲面围成的几何体会是什么呢?ABCD四、圆柱的结构特征矩形O1O1、定义:以矩形的一边所在直线为旋转轴,把它在空间中旋转一周后,其余三边旋转形成的曲面所围成的几何体叫做圆柱。(1)旋转轴叫做圆柱的轴。(2)垂直于轴的边旋转而成的圆面叫做圆柱的底面。(3)由平行于轴的边旋转而成的曲面叫做圆柱的侧面。(4)无
5、论旋转到什么位置不垂直于轴的边都叫做圆柱的母线。轴母线底面侧面2、表示:用表示它的轴的端点的两个字母表示,如圆柱OO1。OO1问题5:如图所示:把直角三角形ABC绕着其一边AB所在的直线在空间中旋转一周,则直角三角形ABC的其它两条边在旋转的过程中所形成的曲面围成的几何体会是什么呢?ABC五、圆锥的结构特征直角三角形SAO1、定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥。(1)旋转轴叫做圆锥的轴。(2)垂直于轴的边旋转而成的圆面叫做圆锥的底面。(3)不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。(4)无论旋
6、转到什么位置不垂直于轴的边都叫做圆锥的母线。OSBA轴底面侧面母线2、圆锥的表示:用表示它的轴的端点的两个字母表示,如所示,记为:圆锥SO问题6:如图所示:直角梯形ABCD绕着它的垂直于底边的腰AB所在的直线在空间中旋转一周,则直角梯形ABCD的其它三条边在旋转的过程中所形成的曲面围成的几何体会是什么呢?ABCD圆台的定义1:把直角梯形绕着它的垂直于底边的腰所在的直线在空间中旋转一周,则直角梯形的其它三条边在旋转的过程中所形成的曲面围成的几何体会叫作圆台六、圆台的结构特征:圆台的定义2:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分,这样的几
7、何体叫做圆台。O'O底面底面轴侧面母线2、圆台的表示:用表示它的轴的字母表示,如圆台OO′总结:由于球体、圆柱、圆锥、圆台分别由平面图形半圆、矩形、直角三角形、直角梯形通过绕着一条轴旋转而生成的,所以把它们都叫旋转体。§1.2:简单的多面体1.多面体的定义:把由若干个平面多边形围成的空间图形叫做多面体。自然界有很多的物体都呈多面体的形状,如图所示:其中:把围成多面体的各个多边形叫作多面体的面;两个面的公共边叫作多面体的棱,棱与棱的公共点叫作多面体的顶点;连结不在同一个面内的两个顶点的线段叫作多面体的对角线。例如:多面体按照它的面数的多少,可以分为:四面
8、体、五面体、六面体、、、、、面面棱顶点棱面一、观察下列几何体并思考:它们具有哪些性质?1、定义
此文档下载收益归作者所有