欢迎来到天天文库
浏览记录
ID:56894671
大小:292.38 KB
页数:21页
时间:2020-07-21
《2015年湖南省高考数学试卷(文科).pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2015年湖南省高考数学试卷(文科)一、选择题(每小题5分,共50分)1.(5分)已知=1+i(i为虚数单位),则复数z=( )A.1+iB.1﹣iC.﹣1+iD.﹣1﹣i2.(5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A.3B.4C.5D.63.(5分)设x∈R,则“x>1“是“x3>1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)若变量x,y满足约束条件,则z=2x﹣y的最小
2、值为( )A.﹣1B.0C.1D.25.(5分)执行如图所示的程序框图,如果输入n=3,则输出的S=( )A.B.C.D.6.(5分)若双曲线﹣=1的一条渐近线经过点(3,﹣4),则此双曲线的离心率为( )A.B.C.D.7.(5分)若实数a,b满足+=,则ab的最小值为( )A.B.2C.2D.48.(5分)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是( )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数9.(5分)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC
3、,若点P的坐标为(2,0),则
4、
5、的最大值为( )A.6B.7C.8D.910.(5分)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)( )A.B.C.D.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁UB)= .12.(5分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,若曲线C的极坐标方程为ρ=2sinθ,则曲线C的直角坐标方程为 .13.(5分)
6、若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°,(O为坐标原点),则r= .14.(5分)已知函数f(x)=
7、2x﹣2
8、﹣b有两个零点,则实数b的取值范围是 .15.(5分)已知ω>0,在函数y=2sinωx与y=2cosωx的图象的交点中,距离最短的两个交点的距离为2,则ω= .三、解答题16.(12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.(Ⅰ)用球的标
9、号列出所有可能的摸出结果;(Ⅱ)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.17.(12分)设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.18.(12分)如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点,(Ⅰ)证明:平面AEF⊥平面B1BCC1;(Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.19.(13分)设数列{an}的前n项和为Sn,已知a1=1
10、,a2=2,an+2=3Sn﹣Sn+1+3,n∈N*,(Ⅰ)证明an+2=3an;(Ⅱ)求Sn.20.(13分)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(Ⅰ)求C2的方程;(Ⅱ)若
11、AC
12、=
13、BD
14、,求直线l的斜率.21.(13分)已知a>0,函数f(x)=aexcosx(x∈[0,+∞]),记xn为f(x)的从小到大的第n(n∈N*)个极值点.(Ⅰ)证明:数列{f(xn)}是等比数列;(Ⅱ)若对一切n∈N*,xn≤
15、f(xn)
16、恒成立,求a的取值范围
17、.2015年湖南省高考数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)已知=1+i(i为虚数单位),则复数z=( )A.1+iB.1﹣iC.﹣1+iD.﹣1﹣i【分析】由条件利用两个复数代数形式的乘除法法则,求得z的值.【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.2.(5分)在一次马拉松比赛
此文档下载收益归作者所有