资源描述:
《新课标版高考数学复习题库考点29 离散型随机变量及其分布列、二项分布及其应用、离散型随机变量的均值与方差.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、考点29离散型随机变量及其分布列、二项分布及其应用、离散型随机变量的均值与方差1.(2010·海南宁夏高考·理科T6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()(A)100(B)200(C)300(D)400【命题立意】本题主要考查了二项分布的期望的公式.【思路点拨】通过题意得出补种的种子数服从二项分布.【规范解答】选B.由题意可知,补种的种子数记为X,服从二项分布,即XB(1000,0.2),所以X的数学期望EX10000.2200.22.(2010·山东高考理
2、科·T5)已知随机变量服从正态分布N(0,),若P(>2)=0.023,则P(-22)=()(A)0.477(B)0.628(C)0.954(D)0.977【命题立意】本题考查正态分布的基础知识,考查考生的推理论证能力和运算求解能力.2【思路点拨】先由服从正态分布N(0,)得出正态曲线关于直线x=0对称,于是得到PP((22))与P(2)的关系,最后进行求解.2【规范解答】选C.因为随机变量服从正态分布N(0,),所以正态曲线关于直线x=0对称,又P(>2)=0.023,所以P(<-2)=0.023,所以P(-2
3、2)=1-P(>2)-P(<-2)=1-20.023=0.954,故选C.3.(2010·江苏高考·T22)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各种产品相互独立.(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;(2)求生产4件甲产品所获得的利润不少于10万元的概率.【命题立意】本题主要考查概率的有关知识,
4、考查运算求解能力.【思路点拨】利用独立事件的概率公式求解.【规范解答】(1)由题设知,X的可能取值为10,5,2,-3,且P(X=10)=0.8×0.9=0.72,P(X=5)=0.2×0.9=0.18,P(X=2)=0.8×0.1=0.08,P(X=-3)=0.2×0.1=0.02.由此得X的分布列为:X1052-3P0.720.180.080.02(2)设生产的4件甲产品中一等品有n件,则二等品有4n件.14由题设知4n(4n)10,解得n,5又nN,得n3或n4.334所求概率为PC0.80.20.80.81924.答:生产4件
5、甲产品所获得的利润不少于10万元的概率为0.8192.4.(2010·安徽高考理科·T21)品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.现设n4,分别以a,a,a,a表示第一次排序时被排为1,2,3,4的四1234种酒在第二次排序时的序号,并令X1a2a3a4a,1234则X是对两次排序的偏离程度的一种描述.(1)
6、写出X的可能值集合;(2)假设a,a,a,a等可能地为1,2,3,4的各种排列,求X的分布列;1234(3)某品酒师在相继进行的三轮测试中,都有X2,①试按(2)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);②你认为该品酒师的酒味鉴别功能如何?说明理由.【命题立意】本题主要考查离散型随机变量及其分布列,考查考生的计数能力,抽象概括能力,概率思想在生活中的应用意识和创新意识.【思路点拨】用列表或树形图表示1,2,3,4的排列的所有可能情况,计算每一种排列下的X值,即可得出其分布列及相关事件的概率.【规范解答】(I)X的可能值的集合为0,2,4,6
7、,8.(II)1,2,3,4的排列共24种,在等可能的假定下,计算每种排列下的X值,得到X02468p1379424242424241(III)(i)p(x2)p(x0)p(x2),6将三轮测试都有x2的概率记作p,由独立性假设可得:1111p66621615(ii)由于p是一个很小的概率,这表明如果仅凭随机猜测得2161000到三轮测试都有xX2的结果的可能性很小,所以可以认为该品酒师确实有良好的味觉鉴别功能,不是靠随机猜测.5.(2010·浙江高考理科·T19)如图,一个小球从M处投入,通过管道自上而下落到A或B或C.已知
8、小球从每个叉口落入左右两个管道的可能性