求极限的方法总结__小论文.doc

求极限的方法总结__小论文.doc

ID:56759898

大小:282.50 KB

页数:5页

时间:2020-07-07

求极限的方法总结__小论文.doc_第1页
求极限的方法总结__小论文.doc_第2页
求极限的方法总结__小论文.doc_第3页
求极限的方法总结__小论文.doc_第4页
求极限的方法总结__小论文.doc_第5页
资源描述:

《求极限的方法总结__小论文.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、求数列极限的方法总结数学科学学院数学与应用数学08级汉班**指导教师****摘 要 数列极限的求法一直是数列中一个比较重要的问题,本文通过归纳和总结,从不同的方面罗列了它的几种求法。关键词数列极限、定义、泰勒公式、无穷小量极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。求数列极限的最基本的方法还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的四则运算法则计算。夹逼性定理和单调有

2、界原理是很重要的定理,在求的时候要重点注意运用。泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。还有一些比较常用的方法,在本文中都一一列举了。1.定义法利用数列极限的定义求出数列的极限.设﹛Xn﹜是一个数列,a是实数,如果对任意给定的〉0,总存在一个正整数N,当n〉N时,都有<,我们就称a是数列{Xn}的极限.记为.例1:按定义证明.解:1/n!=1/n(n-1)(n-2)…1≤1/n令1/n<,则让n>即可,存在N=[],当n>N时,不等式:1/n!=1/n(n-1)(n-2)…1≤1/n<成立,所以.2.利用极限四

3、则运算法则对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则.例2:求,其中.解:分子分母均为无穷多项的和,应分别求和,再用四则运算法则求极限,原式=,3.利用夹逼性定理求极限若存在正整数N,当n>N时,有Xn≤Yn≤Zn,且,则有.例3:求{}的极限.解:对任意正整数n,显然有,而,,由夹逼性定理得.4.换元法通过换元将复杂的极限化为简单.例4.求极限,此时解:若 有 ,令则5.单调有界原理例5.证明数列有极限,并求其极限。证: 令,易知{}递增,且我们用归纳法证明 ≤2. 显然。若≤2 则。故由单调有界原理{}收敛

4、,设→,则在 中两边取极限得   即 解之得 =2 或 =-1 明显不合要求,舍去,从而   6.先用数学归纳法,再求极限.例6:求极限解:S=设=则有S

5、件知所求表达式的极限为0.例11:求解:设,则所以该级数收敛,所以=012.对表达式进行展开、合并、约分和因式分解以及分子分母有理化,三角函数的恒等变形。例12.求解:法一:原式=法二:原式=13.奇数列和偶数列的极限相同,则数列的极限就是这个极限。例13:求的值解:奇数列为=0偶数列为=0所以=014.利于泰勒展开式求极限。例14.求解:原式=(令t=)===15.利于无穷小量的性质和无穷小量和无穷大量之间的关系求极限。利用无穷小量与有界变量的乘积仍为无穷小量,无穷小量与无穷大量互为倒数的关系,以及有限个无穷小的和仍是无穷小等

6、等。例15:求的值解:因为是无穷小量,而是有界变量,所以还是无穷小量,即=016.利用数列的几何、算术平均值求极限。数列{}有极限,则它的几何平均值和算术平均值的极限与与原极限相同。例16:求的值解:==设=,因为知=1所以,所求原式的极限就等于{}的极限即原式==17.绝对值中的极限若,则例17:求的值解:==018.利用黎曼引理例18:求(a>0)解:原式=数列极限的方法还有很多,以上给与大致列举。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。