微积分学习体会.doc

微积分学习体会.doc

ID:56730802

大小:152.50 KB

页数:13页

时间:2020-07-06

微积分学习体会.doc_第1页
微积分学习体会.doc_第2页
微积分学习体会.doc_第3页
微积分学习体会.doc_第4页
微积分学习体会.doc_第5页
资源描述:

《微积分学习体会.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、微积分学习体会XXXXXXXXX班XXX目录对微积分的认识2初识微积分2我眼中的微积分3微积分的发展4萌芽初显4初步成型4理论一统5逐步完善6微积分在现实中的应用6为什么计算机要采用二进制6利用微积分做变力计算8小结10对微积分的认识初识微积分对大多数人来说,微积分的认识学习都始于高二时期。老师以求函数图像面积的方式告诉我们微积分的概念,意味着我们开始迈入这一神奇的领域。但实际上,早在更久之前,我们便已接触过微积分的思想。在我们还在上初中或小学之时,老师就开始教导我们学习圆的有关知识,尤其是圆的面积的求法。很

2、多人都只记得的公式,却忘记了这一公式的根本来源。大多数老师在讲解这一公式时,都采用如下两种思路:1.将一个圆平均分割成数个等大的扇形,然后将其以一定的规律拼成近似的长方形,其长边边长可视为圆的周长的1/2,窄边边长为R,利用长方形的面积公式可得S=a*b=。1.将一个圆平均分割成n个等大的扇形,将其面积s相加即可得到圆的面积。每个扇形可以近似为三角形来计算:,则圆的面积。从中不难看出,对圆的面积的推导过程中也存在着一定的微积分思想,特别是第二种方法,和分割-取点求积-近似求和-取极限的微积分的过程基本一致。其

3、实,人类最早对微积分思想的认知就来源于圆面积的计算。我们初识微积分其实也由此开始。我眼中的微积分在系统地学习一段时间微积分后,我对微积分也有了一定体会。在我看来,函数描绘的是一种规律性的变化,而微积分则是对这一变化的变化率和变化累加量进行的转换和运算。微分是将函数代表的变化分割成微小的量,作为其微小变化量的线性主部,积分则是微分的逆运算,是对微小量的累加和。在微分和积分中,极限思想是都非常重要的。在取极限的情况下,一些有限的量往往对结果没有意义,因此在极限思想下,我们可以用一元函数的微分dy来近似替代其函数变

4、化量从而进行近似计算,也可以通过黎曼和作为函数在区间上的图形面积计算。我们前四章的学习,正是沿着极限—微分—积分的路线逐步前进的。微积分的发展在系统地学习微积分之前,我一直只知道微积分是由牛顿和莱布尼兹发明的。在我的心目中,微积分只不过是这两个人天才思想的表现。但在学习后我才发现,微积分实质上来源已久,并非只是一两个人的思想,而是几个时代数学家的智慧结晶,既有先贤们的探索,也有近现代数学家的闪光。萌芽初显微积分的思想萌芽,部分可以追溯到两千多年前。在希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无

5、穷小过程计算特别形状的面积、体积和曲线长的例子。比如,希腊数学家用方砌圆,庄子的“一尺之棰,日取其半,万世不竭”。魏晋时刘徽的“割圆术”和祖氏父子的割圆法则是将其应用于解决实际问题的典范。古希腊时期的安提芬提出了穷竭法,其由欧多克斯和阿基米德发展。芝诺的一系列关于分割的悖论一直困扰数学家们多年。此外,阿基米德、阿波罗尼奥斯以及中国部分数学家也曾尝试求曲线的切线、求瞬时变化率以及求函数的极大值极小值等问题。初步成型伴随着社会发展,16世纪以后的数学家们需要解决更多的现实问题,自然科学开始迎来新的突破。这一时期,

6、几乎所有的科学大师都致力于解决速率、极值、切线、面积问题,特别是描述运动与变化的无限小算法,并且在相当短的时间内取得了极大的发展。开普勒发现行星运动三大定律,并利用无穷小求和的思想,求得曲边形的面积及旋转体的体积。意大利数学家卡瓦列利与同时期发现卡瓦列利原理(祖暅原理),利用不可分量方法幂函数定积分公式,此外,卡瓦列利还证明了吉尔丁定理。同一时期笛卡尔的代数方法对于微积分的发展起了极大的推动。费马在求曲线的切线及函数的极值方面贡献巨大。他们为微积分的正式创立做出了不可磨灭的贡献。理论一统1664年,牛顿开始研

7、究微积分问题,并在1666年发表《流数简论》,发明出正流数术(微分)和反流数术(积分),并论述了微积分基本定理。此后多年,他一直还在致力于改进自己的理论。先后完成三篇微积分论文:《运用无穷多项方程的分析学》,《流数法与无穷级数》,《曲线求积术》。与牛顿的切入点不同,莱布尼兹创立微积分首先是出于几何问题的思考,尤其是特征三角形的研究。1684年,莱布尼兹整理、概括自己1673年以来微积分研究的成果,发表了第一篇微分学论文它包含了微分记号以及函数和、差、积、商、乘幂与方根的微分法则,还包含了微分法在求极值、拐点以

8、及光学等方面的广泛应用。1686年,莱布尼兹又发表了他的第一篇积分学论文,这篇论文初步论述了积分或求积问题与微分或切线问题的互逆关系,包含积分符号,并给出了摆线方程。牛顿和莱布尼兹的发现将前人的成果有机地结合成一个整体,使微积分开始变得系统化然而,瑞士科学家丢德勒的一篇文章却引起了”科学史上最不幸的一章“,微积分发明权之争,他认为莱布尼兹的借鉴了牛顿,由此,支持牛顿和莱布尼兹的科学家们为此争执不休多

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。