欢迎来到天天文库
浏览记录
ID:56697344
大小:104.00 KB
页数:2页
时间:2020-07-05
《高二数学上学期 1.2《应用举例》导学案 沪教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、河南省淇县2011-2012学年高二数学上学期2.1《数列的概念和简单表示法》导学案沪教版1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语.2、搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;3、理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;4、通过解三角形的应用的学习,提高解决实际问题的能力二、本节重点实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解三、本节难点根据题意建立数学模型,画出示意图四、知识储备1.正
2、弦定理:2.余弦定理:,五、通过预习掌握的知识点解三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力正弦定理和余弦定理在实际测量中有许多应用,教科书介绍了它们在测量距离、高度、角度等问题中的一些应用。对于未知的距离、高度等,存在着许多可以供选择的测量方案,可以应用全等三角形的方法,也可以应用相似三角形的方法,或借助解直角三角形的方法,以及在本节介绍的应用两个定理的方法,
3、等等。但是,由于在测量问题的实际背景下,某些方法也许不能实施,如因为没有足够的空间,不能用全等三角形的方法来测量,所以,一种方法会有局限性。这里介绍的许多问题是用以前的方法所不能解决的。关于三角形的有关几何计算,教科书还涉及了三角形的高和面积的问题,给出了计算三角形的高和面积的公式,这些公式实际上在正弦定理的证明过程中就已经得到。另外,关于三角形边角关系恒等式的证明问题,课程标准要求不在这类问题上作过于繁琐的训练,教科书选择的例题(P21例9)仅限于直接用正弦定理和余弦定理可以证明的问题。六、知识运用1.隔河可以看到两个目标,但
4、不能到达,在岸边选取相距km的C、D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°.A、B、C、D在同一个平面,求两目标A、B间的距离.(答案:km)2.两灯塔A、B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东30,灯塔B在观察站C南偏东60,则A、B之间的距离为多少?(答案:akm)七、重点概念总结解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解。可见,在研究三角形时,灵活根据两个定理
5、可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解附件1:律师事
此文档下载收益归作者所有