欢迎来到天天文库
浏览记录
ID:56682827
大小:271.00 KB
页数:12页
时间:2020-07-04
《高中数学第四章圆与方程4.34.3.1空间直角坐标系4.3.2空间两点间的距离公式学案新人教A版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、4.3.1 空间直角坐标系4.3.2 空间两点间的距离公式目标定位 1.了解空间直角坐标系的概念,理解三维空间的点可以用三个量来表示.2.通过所有棱分别与坐标轴平行的特殊长方体的顶点的坐标,探索并得出空间两点间的距离公式.3.会用空间两点间的距离公式,求两点间的距离,比较线段的长度.自主预习1.空间直角坐标系(1)空间直角坐标系及相关概念①空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x轴、y轴、z轴,这样就建立了一个空间直角坐标系O-xyz.②相关概念:点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xO
2、y平面、yOz平面、zOx平面.(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.2.空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z).其中x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标.3.空间两点间的距离公式(1)在空间中,点P(x,y,z)到坐标原点O的距离
3、OP
4、=.(2)在空间中,P1(x1,y1,z1)与P2(x2,y2,z2)的距离
5、P1P2
6、=.4.
7、空间中的中点坐标公式在空间直角坐标系中,若A(x1,y1,z1),B(x2,y2,z2),则线段AB的中点坐标是.即时自测1.判断题(1)在空间直角坐标系中,在Ox轴上的点的坐标一定是(0,b,0).(×)(2)在空间直角坐标系中,在yOz平面上点的坐标一定可写成(0,b,c).(√)(3)在空间直角坐标系中,在Oz轴上的点的坐标可记为(0,0,c).(√)(4)在空间直角坐标系中点P(a,b,c),关于坐标原点的对称点为P′(-a,-b,-c).(√)提示 (1)由定义可知,在Ox轴上的点(x,y,z),有y=z=0,所以点的坐标可记为(a,0,0).2.点(2,0,3
8、)在空间直角坐标系中的( )A.y轴上B.xOy平面上C.xOz平面上D.第一象限内解析 点(2,0,3)的纵坐标为0,所以该点在xOz平面上.答案 C3.点A在z轴上,它到点(2,,1)的距离是,则A点的坐标是( )A.(0,0,-1)B.(0,1,1)C.(0,0,1)D.(0,0,13)解析 设A(0,0,c),则=,解得c=1,所以点A的坐标为(0,0,1).答案 C4.点P(-3,2,-1)关于平面xOy的对称点是________,关于平面yOz的对称点是________,关于x轴的对称点是________,关于y轴的对称点是________.答案 (-3,
9、2,1) (3,2,-1) (-3,-2,1) (3,2,1)类型一 求空间中点的坐标【例1】建立适当的坐标系,写出底边长为2,高为3的正三棱柱的各顶点的坐标.解 以BC的中点为原点,BC所在的直线为y轴,以射线OA所在的直线为x轴,建立空间直角坐标系,如图.由题意知,AO=×2=,从而可知各顶点的坐标分别为A(,0,0),B(0,1,0),C(0,-1,0),A1(,0,3),B1(0,1,3),C1(0,-1,3).规律方法 (1)题目若未给出坐标系,建立空间直角坐标系时应遵循以下原则:①让尽可能多的点落在坐标轴上或坐标平面内;②充分利用几何图形的对称性.(2)求某点
10、的坐标时,一般先找这一点在某一坐标平面上的射影,确定其两个坐标,再找出它在另一轴上的射影(或者通过它到这个坐标平面的距离加上正负号)确定第三个坐标.【训练1】画一个正方体ABCD-A1B1C1D1,以A为坐标原点,以棱AB,AD,AA1所在的直线为坐标轴,取正方体的棱长为单位长度,建立空间直角坐标系.(1)求各顶点的坐标;(2)求棱C1C中点的坐标;(3)求面AA1B1B对角线交点的坐标.解 建立空间直角坐标系如图所示,且正方体的棱长为1.(1)各顶点坐标分别是A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),A1(0,0,1),B1(1,0,1),
11、C1(1,1,1),D1(0,1,1).(2)棱CC1的中点为M.(3)面AA1B1B对角线交点为N.类型二 求空间中对称点的坐标【例2】在空间直角坐标系中,点P(-2,1,4).(1)求点P关于x轴的对称点的坐标;(2)求点P关于xOy平面的对称点的坐标;(3)求点P关于点M(2,-1,-4)的对称点的坐标.解 (1)由于点P关于x轴对称后,它在x轴的分量不变,在y轴、z轴的分量变为原来的相反数,所以对称点为P1(-2,-1,-4).(2)由于点P关于xOy平面对称后,它在x轴、y轴的分量不变,在z轴的分量变为原来的相反数,
此文档下载收益归作者所有