高中数学《平面向量基本定理》教案 新人教A版必修.doc

高中数学《平面向量基本定理》教案 新人教A版必修.doc

ID:56681661

大小:269.50 KB

页数:2页

时间:2020-07-04

高中数学《平面向量基本定理》教案 新人教A版必修.doc_第1页
高中数学《平面向量基本定理》教案 新人教A版必修.doc_第2页
资源描述:

《高中数学《平面向量基本定理》教案 新人教A版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3.1平面向量基本定理一.自主学习(自学教材93,94页)引子:在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?问题:如图,设、是同一平面内两个不共线的向量,是这一平面内的任一向量,我们通过作图研究与、之间的关系.请完成:①给定平面内任意两个不共线的非零向量、,请你作出向量=3+2、=-2.②由①可知可以用平面内任意两个不共线的非零向量、来表示向量,那么平面内的任一向量是否都可以用形如λ1+λ2的向量表示

2、呢?【由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量、表示出来.当、确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.】由此可得:【平面向量基本定理】:____________________________________________________________________________【定理说明】:(1)我们把不共线向量、叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量在给出基底、的条件下进行分解;(4)基底给定时,分解形式唯一.提出问题①平

3、面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?已知两个非零向量和(如图),作=,=,则∠AOB=θ(0°≤θ≤180°)叫做向量与的夹角.θ的取值范围是________________显然,当θ=0°时,与同向;当θ=180°时,与反向.因此,两非零向量的夹角在区间[0°,180°]内.如果与的夹角是90°,我们说与垂直,记作⊥.②对平面中的任意一个向量能否用两个互相垂直的向量来表示?例1、已知向量、(如图),求作向量-2.5+3.例2.设与是两个不共线向量,=3+4,=-2+5,若实数λ、μ满足λ+μ=5-,求λ、μ的值.

4、例3已知G为△ABC的重心,设=,=,试用、表示向量.课堂小结1.回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,2.总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图.作业布置已知向量、(如图),求作向量(1)+2.(2)-+3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。