高中数学 课时10 平面向量基本定理学案 苏教版必修.doc

高中数学 课时10 平面向量基本定理学案 苏教版必修.doc

ID:56680469

大小:369.50 KB

页数:4页

时间:2020-07-04

高中数学 课时10 平面向量基本定理学案 苏教版必修.doc_第1页
高中数学 课时10 平面向量基本定理学案 苏教版必修.doc_第2页
高中数学 课时10 平面向量基本定理学案 苏教版必修.doc_第3页
高中数学 课时10 平面向量基本定理学案 苏教版必修.doc_第4页
资源描述:

《高中数学 课时10 平面向量基本定理学案 苏教版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课时5平面向量基本定理【学习目标】1.掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量。2.能应用平面向量基本定理解决一些几何问题。【知识梳理】若,是不共线向量,是平面内任一向量ONBMMCM在平面内取一点O,作=,=,=,使=λ1=λ2==+=λ1+λ2得平面向量基本定理:注意:1°、必须不共线,且它是这一平面内所有向量的一组基底2°这个定理也叫共面向量定理3°λ1,λ2是被,,唯一确定的实数。【例题选讲】MDCBA1.如图,ABCD是平行四边形,对角线AC,BD交于M,,,

2、试用基底、表示。2.设、是平面内一组基底,如果=3-2,=4+,=8-9,求证:A,B,D三点共线。3.设、是平面内一组基底,如果=2+k,=--3,=2-,若A,B,D三点共线,求实数k的值。NMEDCBA4.中,,DE//BC,与边AC相交于点E,中线AM与DE交于点N,如图,,,试用、表示。【归纳反思】1.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。2.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择了两个不共线地向量,平面

3、内的任何一个向量都可以用唯一表示,这样几何问题就可以转化为代数问题,转化为只含的代数运算。【课内练习】1.下面三种说法,正确的是(1)一个平面内只有一对不共线的向量可作为表示该平面所有向量的基底;(2)一个平面内有无数对不共线的向量可作为表示该平面所有向量的基底;(3)零向量不可为基底中的向量;2.如果、是平面内一组基底,,那么下列命题中正确的是(1)若实数m,n,使m+n=,则m=n=0;(2)空间任一向量可以表示为=m+n,这里m,n是实数;(3)对实数m,n,向量m+n不一定在平面;(4)对平面内的任一

4、向量,使=m+n的实数m,n有无数组。3.若G是的重心,D、E、F分别是AB、BC、CA的中点,则=NMCBAP4.如图,在中,AM:AB=1:3,AN:AC=1:4,BN与CM交于点P,设,试用,表示。5.设,,,求证:A、B、D三点共线。【巩固提高】1.设是平面内所有向量的一组基底,则下面四组中不能作为基底的是A+和-B3-2和-6+4C+2和+2D和+2.若,,,则=A+B+C+D+3.平面直角坐标系中,O为原点,A(3,1),B(-1,3),点C满足,其中,且=1,则点C的轨迹方程为4.O是平面上一定

5、点,A,B,C是平面上不共线的三个点,动点P满足,则P的轨迹一定通过的心5.若点D在的边BC上,且=,则3m+n的值为6.设=+5,=-2+8,=3(-),求证:A、B、D三点共线。DCBAMN7.在图中,对于平行四边形ABCD,点M是AB的中点,点N在BD上,且BN=BD,求证:M,N,C三点共线。8.已知=5+2,=6+y,,,是一组基底,求y的值。9.如图,在中,D、E分别是线段AC的两个四等份点,点F是线段BC的中点,设,,试用,为基底表示向量。FEDCBA问题统计与分析题源:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。