高中数学 第二章 统计 2.2.2 用样本的数字特征估计总体的数字特征学案新人教A版必修.doc

高中数学 第二章 统计 2.2.2 用样本的数字特征估计总体的数字特征学案新人教A版必修.doc

ID:56679854

大小:89.50 KB

页数:4页

时间:2020-07-04

高中数学 第二章 统计 2.2.2 用样本的数字特征估计总体的数字特征学案新人教A版必修.doc_第1页
高中数学 第二章 统计 2.2.2 用样本的数字特征估计总体的数字特征学案新人教A版必修.doc_第2页
高中数学 第二章 统计 2.2.2 用样本的数字特征估计总体的数字特征学案新人教A版必修.doc_第3页
高中数学 第二章 统计 2.2.2 用样本的数字特征估计总体的数字特征学案新人教A版必修.doc_第4页
资源描述:

《高中数学 第二章 统计 2.2.2 用样本的数字特征估计总体的数字特征学案新人教A版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.2.2用样本的数字特征估计总体的数字特征本课目标:(1)理解样本数据标准差的意义和作用,学会计算数据的标准差。(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释。(3)会用样本的基本数字特征估计总体的基本数字特征。(4)形成对数据处理过程进行初步评价的意识。重点:用样本平均数和标准差估计总体的平均数与标准差。课前准备:阅读课本P71-73【探究新知】<一>、众数、中位数、平均数(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆

2、初中所学的一些统计知识,思考后展开讨论)初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息。例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点)(图略见课本第62页)它告诉我们,该市的月均用水量为2.25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少。〖提问〗:请大家翻回到课本看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为

3、样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差。〖提问〗:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数。因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等。由此可以估计出中位数的值为2.02。(图略见课本63页图2.2-6)〖思考〗:2.02这个中位数的估计值,与样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了

4、)(课本63页图2.2-6)显示,大部分居民的月均用水量在中部(2.02t左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的。〖思考〗:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)<二>、标准差、方差1.标准差平均数为我们提供了样本数据的重要信息,可是,有时平均数也会使我们作出对总体的片面判断。某地区的统计显示,该地区的中学生的平均身高为176㎝,给我们的印象是该地区的中学生生长发育好,身高较高。但是,假如这个平均数是从五十万名中学生抽出

5、的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质。因此,只有平均数难以概括样本数据的实际状态。【例题精析】在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究。——用样本的数字特征估计总体的数字特征我们知道,两个人射击的平均成绩是。那么,是否两个

6、人就没有水平差距呢?直观上看,还是有差异的。很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据。考察样本数据的分散程度的大小,最常用的统计量是标准差。标准差是样本数据到平均数的一种平均距离,一般用s表示。样本数据的标准差的算法:(1)、算出样本数据的平均数。(2)、算出每个样本数据与样本数据平均数的差:(3)、算出(2)中的平方。(4)、算出(3)中n个平方数的平均数,即为样本方差。(1)、算出(4)中平均数的算术平方根,,即为样本标准差。其计算公式为:显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小。〖提问〗:标准差

7、的取值范围是什么?标准差为0的样本数据有什么特点?2.方差:从数学的角度考虑,人们有时用标准差的平方(即方差)来代替标准差,作为测量样本数据分散程度的工具:在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差。【例题精析】〖例1〗:画出下列四组样本数据的直方图,说明他们的异同点。(1)5,5,5,5,5,5,5,5,5(2)4,4,4,5,5,5,6,6,6(3)3,3,4,4,5,6,6,7,7(4)2,2,2,2,5,8,8,8,8分析:先画出数据的直方图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。