高中数学 第1章 三角函数 1.3.1 三角函数的周期性教学设计 苏教版必修.doc

高中数学 第1章 三角函数 1.3.1 三角函数的周期性教学设计 苏教版必修.doc

ID:56677115

大小:627.00 KB

页数:9页

时间:2020-07-04

高中数学 第1章 三角函数 1.3.1 三角函数的周期性教学设计 苏教版必修.doc_第1页
高中数学 第1章 三角函数 1.3.1 三角函数的周期性教学设计 苏教版必修.doc_第2页
高中数学 第1章 三角函数 1.3.1 三角函数的周期性教学设计 苏教版必修.doc_第3页
高中数学 第1章 三角函数 1.3.1 三角函数的周期性教学设计 苏教版必修.doc_第4页
高中数学 第1章 三角函数 1.3.1 三角函数的周期性教学设计 苏教版必修.doc_第5页
资源描述:

《高中数学 第1章 三角函数 1.3.1 三角函数的周期性教学设计 苏教版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.3.1 三角函数的周期性教学分析     三角函数的周期性是在学习了三角函数的概念之后研究的,教材中,为学习三角函数的图象和性质提供了问题背景,因此,教学时要充分运用这些问题背景以突出本章“建立刻画周期性现象的数学模型”这一主题.周期函数的定义是教学中的一个难点.在教学中,可以从“周而复始的重复出现”出发,一步步地使语言精确化,通过“每隔一定时间出现”“自变量每增加或减少一个值,函数值就重复出现”等,逐步抽象出函数周期性的定义.教学中可以引导学生通过对三角函数实例的具体分析,帮助认识周期以及周期函数.因为在本节

2、中,我们讨论的主题是三角函数的周期性,这一点更重要,在教学中不要对一般的周期函数作过多的讨论.三角函数的最小正周期是指三角函数所有周期中的最小正数.对于正弦函数、余弦函数的最小正周期是2π的结论,可以组织学生通过观察三角函数线的变化进行验证,进而通过本节“链接”中的内容了解其证明过程.不论是周期,还是最小正周期,都是对自变量x而言的,是自变量x的改变量.这一点正是解决例2的根据.教学时根据学生的实际,可以组织学生仿照例2推导出函数y=Asin(ωx+φ)的周期为这一结论.三维目标     1.通过创设情境,如单摆运

3、动、波浪、四季变化等,让学生感知周期现象;理解周期函数的概念;能熟练地求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展运用.2.通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物,并通过本节的学习,使学生进一步了解从特殊到一般的认识世界的科学方法,提高认识世界的能力和思维层次,为今后认识世界和探索世界打下坚实的基础.重点难点     教学重点:周期函数定义的理解,深化研究函数性质的思想方法.教学难点:周期

4、函数概念的理解,最小正周期的意义及简单的应用.课时安排     1课时导入新课     思路1.人的情绪、体力、智力都有周期性的变化现象,在日常生活和工作中,人们常常有这样的自我感觉,有的时候体力充沛,心情愉快,思维敏捷;有的时候却疲倦乏力,心灰意冷,反应迟钝;也有的时候思绪不稳,喜怒无常,烦躁不安,糊涂健忘,这些感觉呈周期性发生,贯穿人的一生,这种有规律性的重复,我们称之为周期性现象.请同学们举出生活中存在周期现象的例子,在学生热烈的争论中引入新课.思路2.取出一个钟表,实际操作,我们发现钟表上的时针、分针和秒针

5、每经过一周就会重复,这是一种周期现象.我们这节课要研究的主要内容就是周期现象与周期函数.那么我们怎样从数学的角度研究周期现象呢?在图形上让学生观察正弦线“周而复始”的变化规律,在代数式上让学生思考诱导公式:sin(x+2kπ)=sinx又是怎样反映函数值的“周而复始”的变化规律的.要求学生用日常语言叙述这个公式,通过对图象、函数解析式的特点的描述,使学生在理解周期性的基础上,进而理解“周而复始”变化的代数刻画,由此引出周期函数的概念.推进新课     周期函数的定义由单位圆中的三角函数线可知,正弦、余弦函数值的变化

6、呈现出周期现象.每当角增加(或减少)2π时,所得角的终边与原来角的终边相同,故两角的正弦、余弦函数值也分别相同.即有sin(2π+x)=sinx,cos(2π+x)=cosx.正弦函数和余弦函数所具有的这种性质称为周期性.若记f(x)=sinx,则对于任意x∈R,都有f(x+2π)=f(x).这又启发我们思考:如何用数学语言刻画函数的周期性?教师在引入正式定义之前,可以引导学生先从不同角度进行描述.例如:对于函数f(x),自变量每增加或减少一个定值(这样的定值可以有很多个),函数值就重复出现,那么这个函数就叫做周期

7、函数.教师可以引导点拨学生从诱导公式进行描述.例如:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,k∈Z.这表明,正弦函数、余弦函数在定义域内自变量每增加(k>0时)或减少(k<0时)一个定值2kπ,它的函数值就重复出现,所以正弦函数、余弦函数都是周期函数.还可以通过类比奇函数、偶函数、周期函数的研究方法来加深理解周期性概念.如果函数f(x)对于其定义域内的每一个值,都有:f(-x)=-f(x),那么f(x)叫做奇函数;f(-x)=f(x),那么f(x)叫做偶函数;f(x+T)=f(x),其中T是

8、非零常数,那么函数f(x)叫做周期函数.从上述定义可以看到,函数的性质是对函数的一种整体考查结果,反映了同一类函数的共同特点,它们可以从代数角度得到统一刻画.定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.如果在周期函数f(x)的所有周期

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。