蒙特卡洛模型方法.doc

蒙特卡洛模型方法.doc

ID:56673927

大小:232.50 KB

页数:12页

时间:2020-07-04

蒙特卡洛模型方法.doc_第1页
蒙特卡洛模型方法.doc_第2页
蒙特卡洛模型方法.doc_第3页
蒙特卡洛模型方法.doc_第4页
蒙特卡洛模型方法.doc_第5页
资源描述:

《蒙特卡洛模型方法.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、`蒙特卡罗方法(MonteCarlomethod) 蒙特卡罗方法概述   蒙特卡罗方法又称统计模拟法、随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名。   蒙特卡罗方法的提出   蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.·诺伊曼首先提出。数学家·诺伊曼用驰名世界的赌城—摩纳哥的Monte

2、Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡罗方法就已经存在。1777年,法国Buffon提出用投针实验的方法求圆周率∏。这被认为是蒙特卡罗方法的起源。   蒙特卡罗方法的基本思想   MonteCarlo方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”。19世纪人们用投针试验的方法来决定圆周率π。本世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能。   考虑平面上的一个边长为1的正方形及其部的一个形状不规则的“图形”,如何求出这个“

3、图形”的面积呢?MonteCarlo方法是这样一种“随机化”的方法:向该正方形“随机地”投掷N个点,有M个点落于“图形”,则该“图形”的面积近似为M/N。可用民意测验来作一个不严格的比喻。民意测验的人不是征询每一个登记选民的意见,而是通过对选民进行小规模的抽样调查来确定可能的优胜者。其基本思想是一样的。 科技计算中的问题比这要复杂得多。比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千。对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾难”(CurseofDimensionality),传统的数值方法难以对付(即使使用速度

4、最快的计算机)。MonteCarlo方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数。以前那些本来是无法计算的问题现在也能够计算量。为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧。   另一类形式与MonteCarlo方法相似,但理论基础不同的方法—“拟蒙特卡罗方法”(Quasi-MonteCarlo方法)—近年来也获得迅速发展。我国数学家华罗庚、王元提出的“华—王”方法即是其中的一例。这种方法的基本思想是“Word文档`用确定性的超均匀分布序列(数学上称为LowDiscrepancySequences)代替MonteCarlo方法中的随机数序列。对某些问题

5、该方法的实际速度一般可比MonteCarlo方法提出高数百倍,并可计算精确度。   蒙特卡罗方法的基本原理   由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡罗是基于此思路进行分析的。   设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。首先根据各随机变量的相应分布

6、,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标。   从蒙特卡罗方法的思路可看出,该方法回避了结构可靠度分析中的数学困难,不管状态函数是否非线性、随机变量是否非正态,只要模拟的次数足够多,就可得到一个比较精确的失效概率和可靠度指标。特别在岩土体分析中,变异系数往往较大,与JC法计算的可靠指标相比,结果更为精确,并且由于思路简单易于编制程序。   蒙特卡罗方法在数学中的应用   通常蒙特·卡罗方法通过构造符合

7、一定规则的随机数来解决数学上的各种问题。对于那些由于计算过于复杂而难以得到解析解或者根本没有解析解的问题,蒙特·卡罗方法是一种有效的求出数值解的方法。一般蒙特·卡罗方法在数学中最常见的应用就是蒙特·卡罗积分。   蒙特卡罗方法的应用领域   蒙特卡罗方法在金融工程学,宏观经济学,生物医学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。蒙特卡罗方法的工作过程   在解决实际问题的时候应用蒙特·

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。