欢迎来到天天文库
浏览记录
ID:56582536
大小:78.50 KB
页数:2页
时间:2020-06-29
《九年级数学上册 23.2.2 一元二次方程的解法教案 华东师大版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、23.2.2一元二次方程的解法教学目标:1、会用直接开平方法解形如(a≠0,ab≥0)的方程;2、灵活应用因式分解法解一元二次方程。3、使学生了解转化的思想在解方程中的应用,渗透换远方法。重点难点:合理选择直接开平方法和因式分解法较熟练地解一元二次方程,理解一元二次方程无实根的解题过程。教学过程:问:怎样解方程的?让学生说出作业中的解法,教师板书。解:1、直接开平方,得x+1=±16所以原方程的解是x1=15,x2=-172、原方程可变形为方程左边分解因式,得(x+1+16)(x+1-16)=0即可(x+17)(x-15)=0所以x+17=0,x-15=0原方程的
2、蟹x1=15,x2=-17二、例题讲解与练习巩固1、例1解下列方程(1)(x+1)2-4=0;(2)12(2-x)2-9=0.分 析 两个方程都可以转化为(a≠0,ab≥0)的形式,从而用直接开平方法求解.解 (1)原方程可以变形为(x+1)2=4,直接开平方,得x+1=±2.所以原方程的解是 x1=1,x2=-3.原方程可以变形为________________________,有 ________________________.所以原方程的解是 x1=________,x2=_________.2、说明:(1)这时,只要把看作一个整体,就可以转化为(
3、≥0)型的方法去解决,这里体现了整体思想。3、练习一解下列方程:(1)(x+2)2-16=0;(2)(x-1)2-18=0;(3)(1-3x)2=1;(4)(2x+3)2-25=0.三、读一读四、讨论、探索:解下列方程(1)(x+2)2=3(x+2)(2)2y(y-3)=9-3y(3)(x-2)2—x+2=0(4)(2x+1)2=(x-1)2(5)。本课小结:1、对于形如(a≠0,a≥0)的方程,只要把看作一个整体,就可转化为(n≥0)的形式用直接开平方法解。2、当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解法解。
此文档下载收益归作者所有