切线长定理(钱鸣).ppt

切线长定理(钱鸣).ppt

ID:56560861

大小:3.51 MB

页数:33页

时间:2020-06-28

切线长定理(钱鸣).ppt_第1页
切线长定理(钱鸣).ppt_第2页
切线长定理(钱鸣).ppt_第3页
切线长定理(钱鸣).ppt_第4页
切线长定理(钱鸣).ppt_第5页
资源描述:

《切线长定理(钱鸣).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、新课学习海南中学钱鸣§24.2.2直线和圆的位置关系(3)——切线长定理50°1、如何过⊙O外一点P画出⊙O的切线?2、这样的切线能画出几条?如下左图,借助三角板,我们可以画出PA是⊙O的切线。3、如果∠P=50°,求∠AOB的度数130°画一画O。ABP课外补充思考:已画出切线PA、PB,A、B为切点,则∠OAP=°,连接OP,可知A、B除了在⊙O上,还在怎样的圆上?90如何用圆规和直尺作出这两条切线呢?··oo′p1.连结OP2.以OP为直径作⊙O′,与⊙O交于A、B两点。AB即直线PA、PB为⊙O的切线如图,已知⊙O外一点P,你能用尺规过点P作⊙O的切线吗?通过作图你能发

2、现什么呢?观察实验1.过圆外一点作圆的切线可以作两条2.点A和点B关于直线OP对称说明经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。切线长是一条线段在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长·OPAB切线与切线长是一回事吗?切线长概念··它们有什么区别与联系呢?切线和切线长是两个不同的概念:1、切线是一条与圆相切的直线,不能度量;2、切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。切线和切线长OPAB比一比OABP思考:已知⊙O切线PA、PB,A、B为切点,把圆沿着直线OP对折,你能发现什么?12折一折请

3、证明你所发现的结论。APOBPA=PB∠OPA=∠OPB证明:∵PA,PB与⊙O相切,点A,B是切点∴OA⊥PA,OB⊥PB即∠OAP=∠OBP=90°∵OA=OB,OP=OP∴Rt△AOP≌Rt△BOP(HL)∴PA=PB∠OPA=∠OPB试用文字语言叙述你所发现的结论证一证PA、PB分别切⊙O于A、BPA=PB∠OPA=∠OPB从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。几何语言:反思:切线长定理为证明线段相等、角相等提供新的方法OPAB切线长定理APOB若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.OP垂直

4、平分AB证明:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB∠OPA=∠OPB∴△PAB是等腰三角形,PM为顶角的平分线∴OP垂直平分ABM试一试APO。B若延长PO交⊙O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.CA=CB证明:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB∠OPA=∠OPB∴PC=PC∴△PCA≌△PCB∴AC=BCC。PBAO(3)连结圆心和圆外一点(2)连结两切点(1)分别连结圆心和切点反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。想一想(2)已知OA=3cm,OP=6cm,则∠APB=PABCO60°(4)O

5、P交⊙O于M,则,ABOPAM=BM⌒⌒M⊥牛刀小试(3)若∠P=70°,则∠AOB=°110(1)若PA=4、PM=2,求圆O的半径OAOA=3·opAB猜想如图,若连接AB,则OP与AB有什么关系?分析∵PA、PB是⊙O的切线,A、B为切点∴PA=PB,∠APO=∠BPO∴OP⊥AB,且OP平分ABCD归纳从圆外一点引圆的两条切线,圆心和这一点的连线垂直平分切点所成的弦;平分切点所成的弧。AD与BD相等吗?⌒⌒已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12CM,求△PEF的周长。EAQPFBO

6、易证EQ=EA,FQ=FB,PA=PB∴PE+EQ=PA=12cmPF+FQ=PB=PA=12cm∴周长为24cm牛刀再试探究:PA、PB是⊙O的两条切线,A、B为切点,直线OP交于⊙O于点D、E,交AB于C。BAPOCED(1)写出图中所有的垂直关系OA⊥PA,OB⊥PB,AB⊥OP(3)写出图中所有的全等三角形△AOP≌△BOP,△AOC≌△BOC,△ACP≌△BCP(4)写出图中所有的等腰三角形△ABP△AOB(2)写出图中与∠OAC相等的角∠OAC=∠OBC=∠APC=∠BPC例1已知,如图,PA、PB是⊙O的两条切线,A、B为切点.直线OP交⊙O于点D、E,交AB于C

7、.(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形.(3)如果PA=4cm,PD=2cm,求半径OA的长.AOCDPBE解:(1)OA⊥PA,OB⊥PB,OP⊥AB(2)△OAP≌△OBP,△OCA≌△OCB△ACP≌△BCP.(3)设OA=xcm,则PO=PD+x=2+x(cm)在Rt△OAP中,由勾股定理,得PA2+OA2=OP2即42+x2=(x+2)2解得x=3cm所以,半径OA的长为3cm.利用切线长定理进行计算利用切线长定理进行证明·ABCDEO21例2如图,已知:在

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。