世纪金榜 高中数学 课题:三垂线定理(2)教案 新人教A版.doc

世纪金榜 高中数学 课题:三垂线定理(2)教案 新人教A版.doc

ID:56558721

大小:494.00 KB

页数:2页

时间:2020-06-28

世纪金榜 高中数学 课题:三垂线定理(2)教案 新人教A版.doc_第1页
世纪金榜 高中数学 课题:三垂线定理(2)教案 新人教A版.doc_第2页
资源描述:

《世纪金榜 高中数学 课题:三垂线定理(2)教案 新人教A版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:三垂线定理(2)课型:新授课一、课题:三垂线定理(2)二、教学目标:1.进一步明确三垂线定理及逆定理的内容;2.能在新的情景中正确识别定理中的“三垂线”,并能正确应用.三、教学重、难点:三垂线定理的应用。四、教学过程:(一)复习:1.三垂线定理及其逆定理的内容;2.练习:已知:在正方体中,求证:(1);(2).(二)新课讲解:例1.点为所在平面外的一点,点为点在平面内的射影,若,求证:.证明:连结,∵,且∴(三垂线定理逆定理)同理,∴为的垂心,∴,又∵,∴(三垂线定理)【练习】:所在平面外的一点在平面内的射影为的垂心,求证:点在内的射影是的垂心.例2.已知:四面体中,是锐

2、角三角形,是点在面上的射影,求证:不可能是的垂心.证明:假设是的垂心,连结,则,∵∴是在平面内的射影,∴(三垂线定理)又∵,是在平面内的射影∴(三垂线定理的逆定理)∴是直角三角形,此与“是锐角三角形”矛盾∴假设不成立,所以,不可能是的垂心.例3.已知:如图,在正方体中,是的中点,是的交点,求证:.证明:,是在面上的射影又∵,∴-2-用心爱心专心取中点,连结,∵,∴为在面上的射影,又∵正方形中,分别为的中点,∴,∴(三垂线定理)又∵,∴.五、课堂小结:三垂线定理及其逆定理的应用.六、作业:1.已知是所在平面外一点,两两垂直,是的垂心,求证:平面.2.已知是所在平面外一点,两两垂直

3、,求证:在平面内的射影是的垂心.3.如图,是正三角形,是的中点,平面,四边形是菱形,求证:.4.如图,过直角三角形的直角顶点作线段平面,求证:在平面内的射影是的垂心.课后记:-2-用心爱心专心

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。