欢迎来到天天文库
浏览记录
ID:56494662
大小:244.50 KB
页数:2页
时间:2020-06-25
《七年级数学下册《10.1 生活中的轴对称》(第1课时)教案 (新版)华东师大版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《10.1生活中的轴对称》(第1课时)教案教学目的1.通过展示轴对称图形的图片,使学生初步认识轴对称图形;2.通过试验,归纳出轴对称图形概念,能用概念判断一个图形是否是轴对称图形;理解轴对称图形和两个图形成轴对称这两个概念的区别与联系。轴对称图形的对应线段相等、对应角相等。3.培养学生的动手试验能力、归纳能力和语言表述能力。重点、难点轴对称图形的概念是教学重点,判断图形是否是轴对称、两个图形成轴对称图形、轴对称图形的对应线段相等、对应角相等既是教学重点又是教学难点。教具准备一些关于轴对称、成轴对称的图片、半透明纸张。教学过程一
2、、引入1.展示图片,认识一些轴对称图形。自远古以来,对称形式被认为是和谐美丽、并且真实的,不论是在自然界中还是建筑里,甚至最普通的日常生活用品中,对称的形式随处可见,青山倒映在水中,这是令人难忘的对称景象。同学们可以想象,当你放学回家,落日、晚霞、还有远处的青山倒映在平静的水中,这样如诗如画的景致怎能不令人难忘,2.课上展开讨论,列举出一些现实生活中有关轴对称的物体和建筑物。二、新课1.试验把一张半透明纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样的图形?由教师先示范剪出一个图形,而后由同学们自由发挥想象,剪出图案。2
3、.由展示的图片和同学们剪出的图案归纳轴对称图形的概念。从同学们剪出的图案和展示的图片来看,这些图形如果沿着某条直线对折,对折的两部分是完全重合的,这样的图形称为轴对称图形这条直线叫做这个图形的对称轴。三、练习1.要求同学们找出所剪的图案的对称轴,并且用直尺把它画出来。2.结合展示图片,让同学们找对称轴,并使同学们知道有的轴对称图形不止一条对称轴。例如:圆、五角星、正方形等。3.给每位同学发一张半透明的画有如右图所示的星形图,然后用不同的方式对折,用直尺画出折痕,看看这颗星有几条对称轴。巩固练习1、P100练习22、请同学们说出
4、数字、字母、文字中的轴对称图形。4.什么是两个图形成轴对称?试验:发给每位同学右边两个图形的纸张,把纸张沿着虚线折叠,观察对折后的左边部分和右边部分是否完全重合?像这样,把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即两图形重合时互相重合的点)叫做对称点。练习:在上图的(2)中,把A、B、C的对称点标出来。1.下面哪些选项的右边图形与左边图形成轴对称?2.如图,若沿虚线对折,左边部分与右边部分重合,请找出图中A、B、C的对称点,并说出图中有哪些
5、角相等?哪些线段相等?试验:在纸上滴上墨水,把纸张对折,随后打开,看看形成的两块墨迹是不是关于折痕对称?它的对称轴是哪一条?把它画出来。5.轴对称图形(或关于某条直线成对称的两个图形)沿对称轴对折后的两部分完全重合,所以它的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等。6.轴对称图形与两个图形成轴对称的区别与联系.如图(1),如果沿着虚线对折,直线两旁的部分会完全重合,那么这个图形就是轴对称图形;若把这个图形看成是左右两部分,则这两个图形就是关于虚线这条直线成轴对称。如图(2),如果沿着虚线折叠,右边的图形会
6、与左边的图形完全重合,那么就说这两个图形关于虚线这条直线成轴对称,若把(2)中的左右两个四边形看成是一个整体的图形,那么这个整体的图形是轴对称图形。因此,轴对称图形和两个图形成轴对称的本质是相同的,只是怎么看图形的问题。四、小结本节课认识了什么样的图形是轴对称图形,这些图形都有共同的特点,就是沿着某条直线对折,直线两旁的图形完全重合,这条直线称为这个图形的对称轴。值得同学们注意的是,有的轴对称图形的对称轴不止一条,例如,练习第3题中的星形图就有六条对称轴。成轴对称的两个图形是完全重合的,知道轴对称和成轴对称图形的区别与联系。五
7、、作业1.第109页习题10.1习题第1、2、3、4、5题教后反思:
此文档下载收益归作者所有