数学一轮复习:平面向量与复数(苏教版).ppt

数学一轮复习:平面向量与复数(苏教版).ppt

ID:56477035

大小:862.00 KB

页数:78页

时间:2020-06-19

数学一轮复习:平面向量与复数(苏教版).ppt_第1页
数学一轮复习:平面向量与复数(苏教版).ppt_第2页
数学一轮复习:平面向量与复数(苏教版).ppt_第3页
数学一轮复习:平面向量与复数(苏教版).ppt_第4页
数学一轮复习:平面向量与复数(苏教版).ppt_第5页
资源描述:

《数学一轮复习:平面向量与复数(苏教版).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、平面向量与复数知识体系第一节平面向量的概念及其线性运算基础梳理名称定义表示法向量既有大小又有方向的量;向量的大小叫做向量的长度(或模)向量AB模

2、AB

3、零向量长度为0的向量;其方向是任意的记作0单位向量长度等于1个单位长度的向量常用e表示1.向量的有关概念及表示平行向量方向相同或相反的非零向量a与b共线可记为a∥b;0与任一向量共线共线向量平行向量又叫做共线向量相等向量长度相等且方向相同的向量a=b相反向量长度相等,方向相反的向量(1)a的相反向量记作-a;(2)0的相反向量为0.平行四边形法则向量运算定义法则(或几何意

4、义)运算律加法求两个向量和的运算(1)a+0=a;(2)a+(-a)=0;(3)交换律:a+b=b+a;(4)结合律:(a+b)+c=a+(b+c).2.向量的线性运算三角形法则减法求两个向量差的运算a-b=a+(-b)数乘实数λ与向量a相乘(1)

5、λa

6、=

7、λ

8、

9、a

10、.(2)当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当a=0时,λa=0;当λ=0时,λa=0.λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb.三角形法则3.向量共线定理非零向量a与向量b共线的充要条件:存在

11、唯一一个实数λ,使b=λa.(a≠0)典例分析题型一平面向量的有关概念【例1】给出下列五个命题①两个向量相等,则它们的起点相同,终点相同;②若

12、a

13、=

14、b

15、,则a=b;③在□ABCD中,一定有AB=DC;④若m=n,n=p,则m=p;⑤若a∥b,b∥c,则a∥c.其中正确的序号是______.分析在正确理解有关概念的基础上,注意特殊的情况,是解决本题的关键.解两个向量起点相同,终点相同,则两向量相等;但两个向量相等,不一定有相同的起点和终点,所以①不正确;

16、a

17、=

18、b

19、,但a,b方向不确定,所以a,b不一定相等,故②不正

20、确;零向量与任一非零向量都平行,当b=0时,a与c不一定平行,故⑤不正确.③④正确.学后反思(1)着重理解向量以下几个方面:①向量的模;②向量的方向;③向量的几何表示;④向量的起点和终点.(2)判定两个向量的关系时,要特别注意以下两种特别的情况:①零向量与任何向量共线;②单位向量的长度为1,方向不固定.举一反三1.(原创题)中国象棋中,兵走一步表示一个向量a(走前位置为起点,走后位置为终点),则a最多有______个.解析:本题考查平面向量的有关概念,过河之前兵每次只能向前走一步,过河以后又可向左或向右各走一步,故a最多

21、有3个.答案:3题型二平面向量的线性运算【例2】如图,D、E、F分别为△ABC的三边BC、AC、AB的中点.求证:AD+BE+CF=0.分析在三角形中其他向量最好向三条边上的向量靠拢,即用AB,BC,AC来分别表示待求的向量.证明∵AD=AC+CD,AD=AB+BD,∴2AD=AC+AB+CD+BD,即2AD=AC+AB.同理2BE=BA+BC,2CF=CA+CB.所以2(AD+BE+CF)=AC+AB+BA+BC+CA+CB=0.故AD+BE+CF=0.学后反思平面向量的线性运算常与平面几何图形相结合,求解此类问题应注

22、意:(1)结合图形,选择关系明确的一组不共线向量来表示其他向量,选择恰当的运算关系.(2)注意特殊点的应用.如线段AB的中点为P,则有(其中O为任一点).举一反三2.(2009·山东)设P是△ABC所在平面内的一点,BC+BA=2BP,则PA+PC=_______解析:如图,由向量加法的平行四边形法则易知,BA与BC的和向量过AC边中点,长度是AC边中线长的二倍,结合已知条件可知P为AC边中点,故PA+PC=0.答案:0题型三向量的共线问题【例3】设两非零向量a和b不共线,如果AB=a+b,CD=3(a-b),BC=2a

23、+8b.求证:A、B、D三点共线.分析用向量法证明A、B、D三点共线,可以利用共线向量定理,得到BD=λAB(或AD=λAB等),BD∥AB说明直线BD和AB平行或重合;因为有公共点B,所以只能重合,从而由向量共线推出三点共线.证明∵BC=2a+8b,∴CB=-2a-8b,∴BD=CD-CB=3a-3b+2a+8b=5(a+b),∴BD=5AB.由向量共线定理得BD∥AB,又直线AB和BD有公共点B,因此A、B、D三点共线.学后反思(1)向量共线的充要条件中要注意当两个向量共线时,通常只有非零向量才能表示与之共线的其他向

24、量;要注意待定系数法的运用和方程思想.(2)证明三点共线问题,可用向量共线来解决;但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.解题中应强调“直线AB和BD有公共点B”这一步骤.举一反三3.设两个非零向量e1,e2不共线,已知AB=2e1+ke2,CB=e1+3e2,CD=2e1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。