回归直线方程.ppt

回归直线方程.ppt

ID:56468093

大小:1.19 MB

页数:52页

时间:2020-06-19

回归直线方程.ppt_第1页
回归直线方程.ppt_第2页
回归直线方程.ppt_第3页
回归直线方程.ppt_第4页
回归直线方程.ppt_第5页
资源描述:

《回归直线方程.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、【核心扫描】1.求回归直线的方程.(重点)2.准确理解变量的相关关系.(易混点)2.3.1变量之间的相关关系2.3变量间的相关关系2.3.2两个变量的线性相关小明,你数学成绩不太好,物理怎么样?也不太好啊.学不好数学,物理也是学不好的?????...你认为老师的说法对吗?事实上,我们在考察数学成绩对物理成绩影响的同时,还必须考虑到其他的因素:爱好,努力程度如果单纯从数学对物理的影响来考虑,就是考虑这两者之间的相关关系我们在生活中,碰到很多相关关系的问题:物理成绩数学成绩学习兴趣花费时间其他因素1.下列关系中是相关关系的是().A.位移与速度、时间的关系B.烧香的次数与成绩的

2、关系C.广告费支出与销售额的关系D.物体的加速度与力的关系变量间的相关关系在我们的生活中广泛存在:如:(1)粮食产量与施肥量之间的关系(2)人体内脂肪含量与年龄之间的关系2、两个变量之间产生相关关系的原因是受许多不确定的随机因素的影响.1.变量之间除了函数关系外,还有相关关系.相关关系的概念:两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。相关关系是一种非确定性关系。如何研究这种变量间的相关关系呢?通过收集大量的数据,进行统计,对数据分析

3、,找出其中的规律,对其相关关系作出一定判断.知识探究(二):散点图【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.年龄23273941454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.630.231.430.833.535.234.6思考1:对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?年龄2

4、3273941454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.630.231.430.833.535.234.6思考2:为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?年龄23273941454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.630.231.430.833.535.234.6思考3:上图叫做

5、散点图,你能描述一下散点图的含义吗?在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图.思考4:观察散点图的大致趋势,人的年龄的与人体脂肪含量具有什么相关关系?思考5:在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.一般地,如果两个变量成正相关,那么这两个变量的变化趋势如何?思考6:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点?一个变量随另一个变量的变大而变小,散点图中的点散布在从左上角到右下角的区域.思考7:你能列举一些生活中的变量成正相关或负相关的实例吗?知识探究

6、(一):回归直线思考1:一组样本数据的平均数是样本数据的中心,那么散点图中样本点的中心如何确定?它一定是散点图中的点吗?思考2:在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?这些点大致分布在一条直线附近.思考3:如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.对具有线性相关关系的两个变量,其回归直线一定通过样本点的中心吗?一定思考4:对一组具有线性相关关系的样本数据,你认为其回归直线是一条还是几条?一条思考5

7、:在样本数据的散点图中,能否用直尺准确画出回归直线?借助计算机怎样画出回归直线?知识探究(二):回归方程在直角坐标系中,任何一条直线都有相应的方程,回归直线的方程称为回归方程.对一组具有线性相关关系的样本数据,如果能够求出它的回归方程,那么我们就可以比较具体、清楚地了解两个相关变量的内在联系,并根据回归方程对总体进行估计.思考1:回归直线与散点图中各点的位置应具有怎样的关系?整体上最接近思考2:对于求回归直线方程,你有哪些想法?(x1,y1)(x2,y2)(xi,yi)(xn,yn)可以用或,其中.思考3:对一组具

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。