中考复习专题------实际问题与二次函数.ppt

中考复习专题------实际问题与二次函数.ppt

ID:56459154

大小:1.47 MB

页数:34页

时间:2020-06-18

中考复习专题------实际问题与二次函数.ppt_第1页
中考复习专题------实际问题与二次函数.ppt_第2页
中考复习专题------实际问题与二次函数.ppt_第3页
中考复习专题------实际问题与二次函数.ppt_第4页
中考复习专题------实际问题与二次函数.ppt_第5页
资源描述:

《中考复习专题------实际问题与二次函数.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、中考复习专题------实际问题与二次函数华辰学校-202462-4xy⑴若-3≤x≤3,该函数的最大值、最小值分别为()、()。⑵又若0≤x≤3,该函数的最大值、最小值分别为()、()。求函数的最值问题,应注意什么?55555132、图中所示的二次函数图像的解析式为:1、求下列二次函数的最大值或最小值:⑴y=-x2+2x-3;⑵y=-x2+4x二次函数与最大利润二次函数与体育运动二次函数与最大面积二次函数与生产生活例1.某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是

2、13.5元时,销售量是500件;而单价每降低1元,就可以多售出200件。单价(元)销售量(件)单件利润(元)总利润(元)来到商场请你帮助分析,销售单价是多少时,可以获利最多?二次函数与最大利润解:设销售单价为元,则所获利润即当时,所以销售单价是9.25元时,获利最多,达到9112.5元。例1.某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件;而单价每降低1元,就可以多售出200件。来到商场请你帮助分析,销售单价是多少时,可以获利最多?二次函

3、数与最大利润来到鸡场例2:如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形鸡场,设鸡场的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的鸡场面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成鸡场的最大面积。ABCD二次函数与最大面积ABCD解:(1)∵AB为x米、篱笆长为24米∴花圃宽为(24-4x)米(3)∵墙的可用长度为8米(2)当x=时,S最大值==36(平方米)∴S=x(24-4x)=-4x2+24x(0

4、4≤x<6∴当x=4cm时,S最大值=32平方米来到鸡场议一议回顾《何时获得最大利润》和《最大面积是多少》这两节解决问题的过程,试总结解决此类问题的基本思路。(1)理解问题;(2)分析问题中的变量和常量,以及它们之间的关系;(3)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(4)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值;(5)检验结果的合理性、拓展等。3米8米4米4米来到操场例3.一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为

5、4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。问此球能否投中?二次函数与体育运动8(4,4)如图,建立平面直角坐标系,点(4,4)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数为:(0≤x≤8)(0≤x≤8)∵篮圈中心距离地面3米∴此球不能投中若假设出手的角度和力度都不变,则如何才能使此球命中?探究(1)跳得高一点(2)向前平移一点yx(4,4)(8,3)在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?0123456789yX(8,3)(5,4)(4,4)0123456789在

6、出手角度、力度及高度都不变的情况下,则小明朝着篮球架再向前平移多少米后跳起投篮也能将篮球投入篮圈?(7,3)●例4.抛物线形拱桥,当水面在时,拱顶离水面2m,水面宽度4m,水面下降1m,水面宽度增加多少?xy0(2,-2)●(-2,-2)●解:设这条抛物线表示的二次函数为由抛物线经过点(-2,2),可得所以,这条抛物线的二次函数为:当水面下降1m时,水面的纵坐标为当时,所以,水面下降1m,水面的宽度为m∴水面的宽度增加了    m来到小桥旁二次函数与生产生活用抛物线的知识解决运动场上或者生活中的一些实际问题的一般步骤:建立直角坐标系

7、二次函数问题求解找出实际问题的答案及时总例5.如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线相交于点D。(1)设AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式;(2)当AP的长为何值时,S△PCQ=S△ABC解:(1)∵P、Q分别从A、C两点同时出发,速度相等当P在线段AB上时S△PCQ=CQ•PB=AP•PB=∴AP=CQ=x即S= (0

8、分别从A、C两点同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线相交于点D。(1)设AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式;(2)当AP的长为何值时,S△PCQ=S△A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。