欢迎来到天天文库
浏览记录
ID:49565698
大小:1.47 MB
页数:21页
时间:2020-02-25
《实际问题与二次函数(中考复习专题).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、实际问题与二次函数——中考数学专题复习-202462-4xy⑴若-3≤x≤3,该函数的最大值、最小值分别为()、()。⑵又若0≤x≤3,该函数的最大值、最小值分别为()、()。求函数的最值问题,应注意什么?55555132、图中所示的二次函数图像的解析式为:1、求下列二次函数的最大值或最小值:⑴y=-x2+2x-3;⑵y=x2+4x课前热身二次函数与最大利润二次函数与生产生活二次函数与最大面积二次函数与体育运动例1.某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是50
2、0件;而单价每降低1元,就可以多售出200件。单价(元)销售量(件)单件利润(元)总利润(元)来到商场请你帮助分析,销售单价是多少时,可以获利最多?二次函数与最大利润解:设销售单价为元,则所获利润即当时所以销售单价是9.25元时,获利最多,达到9112.5元。例1.某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件;而单价每降低1元,就可以多售出200件。来到商场请你帮助分析,销售单价是多少时,可以获利最多?二次函数与最大利润来到鸡场例2:如图,在一面靠墙的空地
3、上用长为24米的篱笆,围成中间隔有二道篱笆的长方形鸡场,设鸡场的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的鸡场面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成鸡场的最大面积。ABCD二次函数与最大面积ABCD解:(1)∵AB为x米、篱笆长为24米∴鸡场长BC为(24-4x)米(3)∵墙的可用长度为8米(2)当x=时,S最大值==36(平方米)∴S=x(24-4x)=-4x2+24x(04、与最大面积议一议回顾《何时获得最大利润》和《最大面积是多少》这两节解决问题的过程,试总结解决此类问题的基本思路。(1)理解问题;(2)分析问题中的变量和常量,以及它们之间的关系;(3)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(4)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值;(5)检验结果的合理性、拓展等。例3.抛物线形拱桥,当水面在时,拱顶离水面2m,水面宽度4m,水面下降1m,水面宽度增加多少?xy0(2,-2)●(-2,-2)●解:设这条抛物线表示的二次函数为由抛物线经过点(-2,2),可得所5、以,这条抛物线的二次函数为:当水面下降1m时,水面的纵坐标为当时,所以,水面下降1m,水面的宽度为m∴水面的宽度增加了m来到小桥旁二次函数与生产生活3米8米4米4米来到操场问此球能否投中?二次函数与体育运动例4.一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。8(4,4)如图,建立平面直角坐标系,点(4,4)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数为:(0≤x≤8)(0≤x≤8)∵篮圈中心距离地面3米∴此球不能投中若假6、设出手的角度和力度都不变,则如何才能使此球命中?探究(1)跳得高一点(2)向前平移一点yx(4,4)(8,3)在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?0123456789yX(8,3)(5,4)(4,4)0123456789在出手角度、力度及高度都不变的情况下,则小明朝着篮球架再向前平移多少米后跳起投篮也能将篮球投入篮圈?(7,3)●及时总用抛物线的知识解决运动场上或者生活中的一些实际问题的一般步骤:建立直角坐标系二次函数问题求解找出实际问题的答案做一做某果园有100棵橙子树,每一棵平均结600个橙子。现准备多种一些橙子7、树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。假设果园增种x棵橙子树,那么果园共有______棵橙子树,这时平均每棵树结_______个橙子。如果果园橙子的总产量为y个,那么y与x之间的关系式为_______________。议一议(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系。O5101520x/棵60000601006020060300604006050060600y/个当x<10时,橙子的总产量随增种橙子树的增加而增加;当x>10时,橙子的总8、产量随增种橙子树的增加而减少。(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?x
4、与最大面积议一议回顾《何时获得最大利润》和《最大面积是多少》这两节解决问题的过程,试总结解决此类问题的基本思路。(1)理解问题;(2)分析问题中的变量和常量,以及它们之间的关系;(3)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(4)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值;(5)检验结果的合理性、拓展等。例3.抛物线形拱桥,当水面在时,拱顶离水面2m,水面宽度4m,水面下降1m,水面宽度增加多少?xy0(2,-2)●(-2,-2)●解:设这条抛物线表示的二次函数为由抛物线经过点(-2,2),可得所
5、以,这条抛物线的二次函数为:当水面下降1m时,水面的纵坐标为当时,所以,水面下降1m,水面的宽度为m∴水面的宽度增加了m来到小桥旁二次函数与生产生活3米8米4米4米来到操场问此球能否投中?二次函数与体育运动例4.一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。8(4,4)如图,建立平面直角坐标系,点(4,4)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数为:(0≤x≤8)(0≤x≤8)∵篮圈中心距离地面3米∴此球不能投中若假
6、设出手的角度和力度都不变,则如何才能使此球命中?探究(1)跳得高一点(2)向前平移一点yx(4,4)(8,3)在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?0123456789yX(8,3)(5,4)(4,4)0123456789在出手角度、力度及高度都不变的情况下,则小明朝着篮球架再向前平移多少米后跳起投篮也能将篮球投入篮圈?(7,3)●及时总用抛物线的知识解决运动场上或者生活中的一些实际问题的一般步骤:建立直角坐标系二次函数问题求解找出实际问题的答案做一做某果园有100棵橙子树,每一棵平均结600个橙子。现准备多种一些橙子
7、树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。假设果园增种x棵橙子树,那么果园共有______棵橙子树,这时平均每棵树结_______个橙子。如果果园橙子的总产量为y个,那么y与x之间的关系式为_______________。议一议(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系。O5101520x/棵60000601006020060300604006050060600y/个当x<10时,橙子的总产量随增种橙子树的增加而增加;当x>10时,橙子的总
8、产量随增种橙子树的增加而减少。(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?x
此文档下载收益归作者所有