欢迎来到天天文库
浏览记录
ID:5643827
大小:341.50 KB
页数:7页
时间:2017-12-20
《九上北师大版线段垂直平分线和角平分线专题教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、用心教,用心学,成绩自然提高!教师:科目:学生:上课时间:授课内容:线段的垂直平分线与角平分线专题知识要点详解:1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。定理的数学表示:如图1,已知直线m与线段AB垂直相交于点D,且AD=BD,若点C在直线m上,则AC=BC.定理的作用:证明两条线段相等。(2)线段关于它的垂直平分线对称。(折叠问题)2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直
2、平分线上。定理的数学表示:如图2,已知直线m与线段AB垂直相交于点D,且AD=BD,若AC=BC,则点C在直线m上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。定理的数学表示:如图3,若直线分别是△ABC三边AB、BC、CA的垂直平分线,则直线相交于一点O,且OA=OB=OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它
3、三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部。反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形。4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等。定理的数学表示:如图4,已知OE是∠AOB的平分线,F是OE上一
4、点,若CF⊥OA于点C,DF⊥OB于点D,则CF=DF.定理的作用:①证明两条线段相等;②用于几何作图问题;角是一个轴对称图形,它的对称轴是角平分线所在的直线。5、角平分线性质定理的逆定理:角平分线性质定理的逆定理:在角的内部,且到角的两边距离相等的点在这个角的角平分线上。定理的数学表示:如图5,已知点P在∠AOB的内部,且PC⊥OA于C,PD⊥OB于D,若PC=PD,则点P在∠AOB的平分线上。定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线。注意角平分线的性质定理与逆定理的区别和联
5、系.6、关于三角形三条角平分线的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等。7用心教,用心学,成绩自然提高!定理的数学表示:如图6,如果AP、BQ、CR分别是△ABC的内角∠BAC、∠ABC、∠ACB的平分线,那么:①AP、BQ、CR相交于一点I;②若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F,则DI=EI=FI.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一
6、定在三角形的内部。7、关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线;(2)会作已知角的角平分线;(3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.课堂练习:一、选择题1、如果三角形三条边的中垂线的交点在三角形的外部,那么,这个三角形是()A、直角三角形B、锐角三角形C、钝角三角形D、等边三角形2、下列命题中正确的命题有()①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB
7、,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.A.1个B.2个C.3个D.4个3、如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为( )A、6B、5C、4D、34、如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为( )A、7B、14C、17D、205、如图,在Rt△ACB中,∠C
8、=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,则AE的值是( )A、B、C、6D、46、如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于( )7用心教,用心学,成绩自然提高!A、80°B、70°C、60°D、50°7、如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:(甲)作∠ACP、∠BCP之角平
此文档下载收益归作者所有