欢迎来到天天文库
浏览记录
ID:56431837
大小:582.00 KB
页数:79页
时间:2020-06-18
《二元一次不等式(组)与简单的线性规划问题(4课时).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.3.1二元一次不等式(组)与平面区域第一课时问题提出1.什么是一元二次不等式?其一般形式如何?基本概念:只含有一个未知数,且未知数的最高次数是2的不等式.一般形式:或(a>0).2.在现实生活和数学中,我们会遇到各种不同的不等关系,需要用不同的数学模型来刻画和研究.一元一次不等式和一元二次不等式都只含有一个未知数,在实际问题中,我们将遇到需要用两个未知数来表示不等关系,这是一个新的学习内容.二元一次不等式与平面区域探究(一):二元一次不等式的有关概念【背景材料】一家银行的信贷部计划年初投入不超过2500万元用于企业
2、和个人贷款,希望这笔资金至少可带来3万元的收益,其中从企业贷款中获益12%,从个人贷款中获益10%.因此,信贷部应如何分配贷款资金就成为一个实际问题.思考1:设用于企业贷款的资金为x万元,用于个人贷款的资金为y万元,从贷款总额的角度分析有什么不等关系?用不等式如何表示?x+y≤2500思考2:从银行收益的角度分析有什么不等关系?用不等式如何表示?(12%)x+(10%)y≥3,即6x+5y≥150思考3:考虑到用于企业和个人贷款的资金数额都不能是负值,x、y还要满足什么不等关系?x≥0,y≥0思考4:根据上述分析,银行
3、信贷部分配资金应满足的条件是什么?思考5:不等式x+y≤2500与6x+5y≥150叫什么名称?其基本含义如何?二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式.思考6:二元一次不等式的一般形式如何?怎样理解二元一次不等式组?二元一次不等式组:由几个二元一次不等式组成的不等式组.一般形式:Ax+By+C≤0或Ax+By+C≥0思考7:集合{(x,y)
4、x+y≤2500}的含义如何?满足不等式x+y≤2500的所有有序实数对(x,y)构成的集合.思考8:怎样理解二元一次不等式(组)的解集?满足二元一次不等
5、式(组)的x和y的取值构成有序实数对(x,y),所有这样的有序实数对(x,y)构成的集合称为二元一次不等式(组)的解集.探究(二):特殊不等式与平面区域二元一次不等式(组)的解是有序实数对,而直角坐标平面内点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,所以二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合.x>ax<a思考1:在平面直角坐标系中,方程x=a表示一条直线,那么不等式x>a和x<a表示的图形分别是什么?xyox=axyox=a思考2:在平面直角坐标系中,不等式y≥a和y≤
6、a分别表示什么区域?y≥axyoy=ay≤axyoy=ay>x思考3:在平面直角坐标系中,不等式y>x和y<x.分别表示什么区域?xyoy=xy<xxyoy=x思考4:在平面直角坐标系中,不等式y>-x和y<-x分别表示什么区域?y>-xxyoy=-xy<-xxyoy=-x探究(三):一般不等式与平面区域思考1:在平面直角坐标系中,方程x-y-6=0表示一条直线,对于坐标平面内任意一点P,它与该直线的相对位置有哪几种可能情形?在直线上;x-y-6=0xyOPPP在直线左上方区域内;在直线右下方区域内.思考2:若点P(x
7、,y)是直线x-y-6=0左上方平面区域内一点,那么x-y-6是大于0?还是小于0?为什么?x-y-6=0xyOP(x,y)A(x,y0)x-y-6<0y>y0思考3:如果点P(x,y)的坐标满足x-y-6<0,那么点P一定在直线x-y-6=0左上方的平面区域吗?为什么?x-y-6=0xyOP(x,y)A(x,y0)x-y-6<0思考4:不等式x+y-6<0表示的平面区域是直线x+y-6=0的左下方区域?还是右上方区域?你有什么简单的判断办法吗?x+y-6=0xyOx+y-6<0思考5:不等式x+y-6<0和不等式x+
8、y-6>0分别表示直线l:x+y-6=0左下方的平面区域和右上方的平面区域,直线l叫做这两个区域的边界.那么不等式x+y-6<0和不等式x+y-6≤0表示的平面区域有什么不同?在图形上如何区分?x+y-6=0xyOx+y-6<0x+y-6>0x+y-6<0xyO包括边界的区域将边界画成实线,不包括边界的区域将边界画成虚线.x+y-6≤0xyO4x-3y≤12理论迁移例画出下列不等式表示的平面区域.(1)x+4y<4;(2)4x-3y≤12.x+4y<4xyOxyO143-4小结作业1.对于直线Ax+By+C=0同一侧的
9、所有点P(x,y),将其坐标代入Ax+By+C所得值的符号都相同.在几何上,不等式Ax+By+C>0(或<0)表示半平面.2.画二元一次不等式表示的平面区域,常采用“直线定界,特殊点定域”的方法,当边界不过原点时,常把原点作为特殊点.3.不等式Ax+By+C>0表示的平面区域位置与A、B的符号有关,相关理论不要求掌握.作业:练习:
此文档下载收益归作者所有