欢迎来到天天文库
浏览记录
ID:56413886
大小:23.50 KB
页数:4页
时间:2020-06-23
《八年级数学下册《4.2 提公因式法》教案3 (新版)北师大版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《提公因式法》第1课时教学目标1、知识与技能:(1)使学生经历探索寻找多项式各项的公因式的过程,能确定多项式各项的公因式.(2)会用提取公因式法进行因式分解.2、过程与方法:(1)由学生自主探索解题途径,在此过程中,通过观察、对比等手段,确定多项式各项的公因式,加强学生的直觉思维,渗透化归的思想方法,培养学生的观察能力.(2)由乘法分配律的逆运算过渡到因数分解,再由单项式与多项式的乘法运算过渡到因式分解,进一步发展学生的类比思想.(3)寻找出确定多项式各项的公因式的一般方法,培养学生的初步归纳能力.3、情感、
2、态度与价值观:进一步培养学生的矛盾对立统一的哲学观点以及实事求是的科学态度.教学重难点重点:能观察出多项式的公因式;并根据分配律把公因式提出来.难点:正确识别多项式的公因式.教学过程第一环节:算一算计算:(1)学生回答:你是用什么方法计算的?这个式子的各项有相同的因数吗?第二环节:想一想多项式ab+ac中,各项有相同的因式吗?多项式x2+4x呢?多项式mb2+nb–b呢?结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.第三环节:议一议多项式2x2y+6x3y2中各项的公因式是什么?结论:(1)
3、各项系数是整数,系数的最大公约数是公因式的系数;(2)各项都含有的字母的最低次幂的积是公因式的字母部分;(3)公因式的系数与公因式字母部分的积是这个多项式的公因式.第四环节:试一试将以下多项式写成几个因式的乘积的形式:(1)ab+ac(2)x2+4x(3)mb2+nb–b如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.第五环节:做一做将下列多项式进行分解因式:(1)3x+6(2)7x2–21x(3)8a3b2–12ab3c+a
4、b(4)–24x3–12x2+28x学生归纳:提取公因式的步骤:(1)找公因式;(2)提公因式.易出现的问题:(1)第(3)题中的最后一项提出ab后,漏掉了“+1”;(2)第(4)题提出“–”时,后面的因式不是每一项都变号.矫正对策:(1)因式分解后括号内的多项式的项数与原多项式的项数是否相同;(2)如果多项式的第一项带“–”,则先提取“–”号,然后提取其它公因式;(3)将分解因式后的式子再进行单项式与多项式相乘,其积是否与原式相等.第六环节:反馈练习1、找出下列各多项式的公因式:(1)4x+8y(2)am+
5、an(3)48mn–24m2n3(4)a2b–2ab2+ab2、将下列多项式进行分解因式:(1)8x–72(2)a2b–5ab(3)4m3–8m2(4)a2b–2ab2+ab(5)–48mn–24m2n3(6)–2x2y+4xy2–2xy第2课时教学目标1、知识与技能:(1)使学生经历从简单到复杂的螺旋式上升的认识过程.(2)会用提取公因式法进行因式分解.2、过程与方法:(1)培养学生的直觉思维,渗透化归的思想方法,培养学生的观察能力.(2)从提取的公因式是一个单项式过渡到提取的公因式是多项式,进一步发展学生
6、的类比思想.3、情感、态度与价值观:通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点.教学重难点重点:含有公因式是多项式的分解因式.难点:整体思想的运用以及代数式的符号变换的处理.教学过程第一环节:练一练把下列各式因式分解:(1)am+an(2)a2b–5ab(3)m2n+mn2–mn(4)–2x2y+4xy2–2xy第二环节:想一想因式分解:a(x–3)+2b(x–3)引导学生通过类比将提取单项式公因式的方法与步骤推广应用于提取的多项式公因式.由于题中很显明地表明,多项式中的两项都存在着(x-3
7、),通过观察,学生较容易找到公因式是(x-3),并能顺利地进行因式分解.第三环节:做一做在下列各式等号右边的括号前插入“+”或“–”号,使等式成立.(1)2–a=______(a–2)(2)y–x=______(x–y)(3)b+a=______(a+b)(4)(b–a)2=______(a–b)2(5)–m–n=______(m+n)(6)–s2+t2=______(s2–t2)注意事项:(1)首先注意分清前后两个多项式的底数部分是相等关系还是互为相反数的关系;(2)当前后两个多项式的底数相等时,则只要在第
8、二个式子前添上“+”;(3)当前后两个多项式的底数部分是互为相反数时,如果指数是奇数,则在第二个式子前添上“–”;如果指数是偶数,则在第二个式子前添上“+”.第四环节:试一试将下列各式因式分解:(1)a(x–y)+b(y–x)(2)3(m–n)3–6(n–m)2进一步引导学生采用类比的方法由提取的公因式是单项式类比出提取的公因式是多项式的方法与步骤.(1)观察多项式中括号内不同符号的多项式部分,并把
此文档下载收益归作者所有