九年级数学上册 2.2.3 因式分解法教案 (新版)湘教版.doc

九年级数学上册 2.2.3 因式分解法教案 (新版)湘教版.doc

ID:56411466

大小:22.00 KB

页数:4页

时间:2020-06-23

九年级数学上册 2.2.3 因式分解法教案 (新版)湘教版.doc_第1页
九年级数学上册 2.2.3 因式分解法教案 (新版)湘教版.doc_第2页
九年级数学上册 2.2.3 因式分解法教案 (新版)湘教版.doc_第3页
九年级数学上册 2.2.3 因式分解法教案 (新版)湘教版.doc_第4页
资源描述:

《九年级数学上册 2.2.3 因式分解法教案 (新版)湘教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、因式分解法教学目标【知识与技能】能灵活运用直接开平方法、配方法、公式法及因式分解法解一元二次方程.能够根据一元二次方程的结构特点,灵活择其简单的方法.【过程与方法】通过比较、分析、综合,培养学生分析问题解决问题的能力.【情感态度】通过知识之间的相互联系,培养学生用联系和发展的眼光分析问题,解决问题,树立转化的思想方法.【教学重点】用因式分解法一元二次方程.【教学难点】理解因式分解法解一元二次方程的基本思想.教学过程一、情景导入,初步认知复习:将下列各式分解因式(1)5x2-4x(2)x2-4x+4(3)4x(x-1)-2+2x(4)x2-4(5)(2x-1)2-x2【教

2、学说明】通过复习相关知识,有利于学生熟练正确将多项式因式分解,从而有利降低本节的难度.二、思考探究,获取新知1.解方程x2-3x=0可用因式分解法求解方程左边提取公因式x,得x(x-3)=0由此得x=0或x-3=0即x1=0,x2=3与公式法相比,哪种更简单?【归纳结论】利用因式分解来解一元二次方程的方法叫做因式分解法.2.用因式分解法解下列方程;(1)x(x-5)=3x;(2)2x(5x-1)=3(5x-1);(3)(35-2x)2-900=0.3.你能总结因式分解法解一元二次方程的一般步骤吗?【归纳结论】把方程化成一边为0,另一边是两个一次因式的乘积的形式,然后使每

3、一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解.4.说一说:因式分解法适用于解什么形式的一元二次方程.【归纳结论】因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程.5.选择合适的方法解下列方程:(1)x2+3x=0;(2)5x2-4x-3=0;(3)x2+2x-3=0.按课本方式引导学生用因式分解法解一元二次方程.6.如何选择合适的方法解一元二次方程呢?【归纳结论】公式法适用于所有一元二次方程.因式分解法(有时需要先配方)适用于所有一元二次方程.配方法是为了推导出求根公式,以及先配方,然后用因式分解法.总之,解一元

4、二次方程的基本思路都是:将一元二次方程转化成为一元一次方程,即降次,其本质是把方程ax2+bx+c=0(a≠0)的左边的二次多项式分解成两个一次多项式的乘积,即ax2+bx+c=a(x-x1)(x-x2),其中x1和x2是方程ax2+bx+c=0的两个根.【教学说明】在学生解决问题的基础上引导学生探索利用因式分解解方程的方法,感受因式分解的作用以及能够解方程的依据.三、运用新知,深化理解1.用因式分解法解下列方程:(1)5x2+3x=0;(2)7x(3-x)=4(x-3).分析:(1)左边=x(5x+3),右边=0;(2)先把右边化为0,7x(3-x)-4(x-3)=0

5、,找出(3-x)与(x-3)的关系.解:(1)因式分解,得x(5x+3)=0,于是得x=0或5x+3=0,x1=0,x2=-3/5;(2)原方程化为7x(3-x)-4(x-3)=0,因式分解,得(x-3)(-7x-4)=0,于是得x-3=0或-7x-4=0,x1=3,x2=-4/72.选择合适的方法解下列方程:(1)2x2-5x+2=0;(2)(1-x)(x+4)=(x-1)(1-2x).分析:(1)题宜用公式法;(2)题中找到(1-x)与(x-1)的关系用因式分解法;解:(1)a=2,b=-5,c=2,b2-4ac=(-5)2-4×2×2=9>0,x1=2,x2=1/

6、2(2)原方程化为(1-x)(x+4)+(1-x)(1-2x)=0,因式分解,得(1-x)(5-x)=0,即(x-1)(x-5)=0,x-1=0或x-5=0,x1=1,x2=53.用因式分解法解下列方程:(1)10x2+3x=0;(2)7x(3-x)=6(x-3);(3)9(x-2)2=4(x+1)2.分析:(1)左边=x(10x+3),右边=0;(2)先把右边化为0,7x(3-x)-6(x-3)=0,找出(3-x)与(x-3)的关系;(3)应用平方差公式.解:(1)因式分解,得x(10x+3)=0,于是得x=0或10x+3=0,x1=0,x2=-3/10;(2)原方程

7、化为7x(3-x)-6(x-3)=0,因式分解,得(x-3)(-7x-6)=0,于是得x-3=0或-7x-6=0,x1=3,x2=-6/7;(3)原方程化为9(x-2)2-4(x+1)2=0,因式分解,得[3(x-2)+2(x+1)][3(x-2)-2(x+1)]=0,即(5x-4)(x-8)=0,于是得5x-4=0或x-8=0,x1=4/5,x2=8.4.已知(a2+b2)2-(a2+b2)-6=0,求a2+b2的值.分析:若把(a2+b2)看作一个整体,则已知条件可以看作是以(a2+b2)为未知数的一元二次方程.解:设a2+b2=x,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。