2018版高考数学二轮复习第1部分重点强化专题专题限时集训1三角函数问题理.doc

2018版高考数学二轮复习第1部分重点强化专题专题限时集训1三角函数问题理.doc

ID:56404729

大小:88.50 KB

页数:7页

时间:2020-06-23

2018版高考数学二轮复习第1部分重点强化专题专题限时集训1三角函数问题理.doc_第1页
2018版高考数学二轮复习第1部分重点强化专题专题限时集训1三角函数问题理.doc_第2页
2018版高考数学二轮复习第1部分重点强化专题专题限时集训1三角函数问题理.doc_第3页
2018版高考数学二轮复习第1部分重点强化专题专题限时集训1三角函数问题理.doc_第4页
2018版高考数学二轮复习第1部分重点强化专题专题限时集训1三角函数问题理.doc_第5页
资源描述:

《2018版高考数学二轮复习第1部分重点强化专题专题限时集训1三角函数问题理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题限时集训(一) 三角函数问题(对应学生用书第81页)(限时:40分钟)题型1 三角函数的图象问题3,5,11题型2 三角函数的性质问题1,4,6,7,8,12,13,14题型3 三角恒等变换2,9,10一、选择题1.(2017·洛阳一模)下列函数中,是周期函数且最小正周期为π的是(  )A.y=sinx+cosxB.y=sin2x-cos2xC.y=cos

2、x

3、D.y=3sincosB [对于A,函数y=sinx+cosx=sin的最小正周期是2π,不符合题意;对于B,函数y=sin2x-cos2x=-(1+cos2x)=-cos2x的最小正周期是π,符合题意;对于C,y=cos

4、x

5、

6、=cosx的最小正周期是2π,不符合题意;对于D,函数y=3sincos=sinx的最小正周期是2π,不符合题意.故选B.]2.(2017·石家庄二模)若sin(π-α)=,且≤α≤π,则sin2α的值为(  )【导学号:】A.-B.-C.D.A [因为sin(π-α)=sinα=,≤α≤π,所以cosα=-,所以sin2α=2sinαcosα=2××=-,故选A.]3.(2017·广州毕业班模拟)若将函数f(x)=sin2x+cos2x的图象向左平移φ个单位长度,所得图象关于y轴对称,则φ的最小正值是(  )A.B.C.D.A [将函数f(x)=sin2x+cos2x=sin的图象向

7、左平移φ个单位长度,得到函数g(x)=sin=sin的图象,∵所得图象关于y轴对称,∴2φ+=+kπ(k∈Z),∴φ=+(k∈Z),∴φ的最小正值是φ=.]4.(2017·广东惠州三调)函数y=cos2x+2sinx的最大值为(  )【导学号:】A.B.1C.D.2C [y=cos2x+2sinx=-2sin2x+2sinx+1.设t=sinx(-1≤t≤1),则原函数可以化为y=-2t2+2t+1=-2+,∴当t=时,函数取得最大值.]5.(2017·武汉4月模拟)如图15所示,某地一天6~14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b的图象,则这段曲线的函数解析式可以为

8、(  )图15A.y=10sin+20,x∈[6,14]B.y=10sin+20,x∈[6,14]C.y=10sin+20,x∈[6,14]D.y=10sin+20,x∈[6,14]A [由三角函数的图象可知,b==20,A==10,=14-6=8⇒T=16=⇒ω=,则y=10sin+20,将(6,10)代入得10sin+20=10⇒sin=-1⇒φ=+2kπ(k∈Z),故选A.]6.(2017·安徽百所重点中学二模联考)将函数f(x)=sin2x-cos2x+1的图象向左平移个单位长度,再向下平移1个单位长度,得到函数y=g(x)的图象,则下列关于函数y=g(x)的说法错误的是(  )

9、A.函数y=g(x)的最小正周期为πB.函数y=g(x)是奇函数C.函数y=g(x)的图象与直线x=0,x=,y=0围成的图形的面积为D.函数y=g(x)的单调递增区间为(k∈Z)D [f(x)=sin2x-cos2x+1=sin+1,将其图象向左平移个单位长度得到y=sin+1=sin2x+1的图象,再向下平移1个单位长度得到g(x)=sin2x的图象,易知A,B正确;对于C,所求图形面积S=∫0sin2xdx-∫sin2xdx=-cos2x+cos2x=,C正确;令-+2kπ≤2x≤+2kπ(k∈Z),解得-+kπ≤x≤+kπ(k∈Z),故g(x)的单调递增区间为(k∈Z),D错误.

10、]7.(2017·沈阳二模)已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤对x∈R恒成立,且f>f(π),则f(x)的单调递增区间是(  )【导学号:】A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)C [因为f(x)≤对x∈R恒成立,即==1,所以φ=kπ+(k∈Z).因为f>f(π),所以sin(π+φ)>sin(2π+φ),即sinφ<0,所以φ=-π+2kπ(k∈Z),所以f(x)=sin,所以由三角函数的单调性知2x-∈(k∈Z),得x∈(k∈Z),故选C.]8.(2017·山西太原一模)已知函数f(x)=sinωx-cosωx(ω>0),若方程f(x

11、)=-1在(0,π)上有且只有四个实数根,则实数ω的取值范围为(  )A.B.C.D.B [因为f(x)=2sin,方程2sin=-1在(0,π)上有且只有四个实数根,即sin=-在(0,π)上有且只有四个实数根.设t=ωx-,因为0<x<π,所以-<t<ωπ-,所以<ωπ-≤,解得<ω≤,故选B.]二、填空题9.(2017·郑州第一次质量预测)在平面直角坐标系xOy中,已知角α的顶点和点O重合,始边与x轴的非负半轴重合,终边上一点

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。