欢迎来到天天文库
浏览记录
ID:56402830
大小:140.50 KB
页数:11页
时间:2020-06-23
《2017-2018版高中数学 第三章 指数函数和对数函数 3 指数函数(二)学案 北师大版必修1.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3指数函数(二)学习目标 1.掌握指数函数与其他函数复合所得的函数单调区间的求法及单调性的判断.2.能借助指数函数性质比较大小.3.会解简单的指数方程、不等式.4.了解与指数函数相关的函数奇偶性的判断方法.知识点一 不同底指数函数图像的相对位置思考 y=2x与y=3x都是增函数,都过点(0,1),在同一坐标系内如何确定它们两个的相对位置? 梳理 一般地,在同一坐标系中有多个指数函数图像时,图像的相对位置与底数大小有如下关系:(1)在y轴右侧,图像从上到下相应的底数由大变小;在y轴左侧,图像从下到
2、上相应的底数由大变小.即无论在y轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x=1时,y=a去理解,如图.(2)指数函数y=ax与y=x(a>0且a≠1)的图像关于y轴对称.知识点二 比较幂的大小思考 若x1<x2,则ax1与ax2(a>0且a≠1)的大小关系如何? 梳理 一般地,比较幂大小的方法有(1)对于同底数不同指数的两个幂的大小,利用指数函数的__________来判断.(2)对于底数不同指数相同的两个幂的大小,利用指数函数的________的变化规律来判断.(3)对于底数不同
3、指数也不同的两个幂的大小,则通过__________来判断.知识点三 解指数方程、不等式思考 若a<a,则x1,x2的大小关系如何? 梳理 简单指数不等式的解法(1)形如af(x)>ag(x)的不等式,可借助y=ax的______________求解.(2)形如af(x)>b的不等式,可将b化为以a为底数的指数幂的形式,再借助y=ax的__________求解.(3)形如ax>bx的不等式,可借助两函数y=ax,y=bx的图像求解.知识点四 与指数函数复合的函数单调性思考 y=的定义域
4、与y=的定义域是什么关系?y=的单调性与y=的单调性有什么关系? 梳理 一般地,有形如y=af(x)(a>0,且a≠1)函数的性质(1)函数y=af(x)与函数y=f(x)有________的定义域.(2)当a>1时,函数y=af(x)与y=f(x)具有________的单调性;当05、af(x)=b型通常化为同底来解.(2)解指数方程时常用换元法,用换元法时要特别注意“元”的范围.转化为解二次方程,用二次方程求解时,要注意二次方程根的取舍.跟踪训练1 解下列方程.(1)33x-2=81;(2)=;(3)52x-6×5x+5=0. 类型二 指数函数单调性的应用例2 比较下列各题中两个值的大小.(1)1.7-2.5,1.7-3;(2)1.70.3,1.50.3;(3)1.70.3,0.83.1. 反思与感悟 当两个数不能利用同一函数的单调性作比较时,可考虑引入中间6、量,常用的中间量有0和±1.跟踪训练2 比较下列各题中的两个值的大小.(1)0.8-0.1,1.250.2;(2)-π,1. 例3 解关于x的不等式:a2x+1≤ax-5(a>0,且a≠1). 反思与感悟 解指数不等式的基本方法是先化为同底指数式,再利用指数函数单调性化为常规的不等式来解,注意底数对不等号方向的影响.跟踪训练3 已知(a2+a+2)x>(a2+a+2)1-x,则x的取值范围是________.例4 (1)求函数y=的单调区间;(2)求函数y=2x-8·x+17、7的单调区间. 反思与感悟 复合函数单调性问题归根结底是由x18、函数f(x)=的递增区间为( )A.(-∞,0]B.[0,+∞)C.(-1,+∞)D.(-∞,-1)4.设0<a<1,则关于x的不等式的解集为________.5.若指数函数y=ax在[-1,1]上的最大值与最小值的差是1,则底数a=________.1.比较两个指数式值的大小的主要方法(1)比较形如am与an的大小,可运用指数函数y=ax的单调性.(2)比较形如am与bn的大小,一般找一个“中间值c”,若amc且c>bn,则am>bn.2.
5、af(x)=b型通常化为同底来解.(2)解指数方程时常用换元法,用换元法时要特别注意“元”的范围.转化为解二次方程,用二次方程求解时,要注意二次方程根的取舍.跟踪训练1 解下列方程.(1)33x-2=81;(2)=;(3)52x-6×5x+5=0. 类型二 指数函数单调性的应用例2 比较下列各题中两个值的大小.(1)1.7-2.5,1.7-3;(2)1.70.3,1.50.3;(3)1.70.3,0.83.1. 反思与感悟 当两个数不能利用同一函数的单调性作比较时,可考虑引入中间
6、量,常用的中间量有0和±1.跟踪训练2 比较下列各题中的两个值的大小.(1)0.8-0.1,1.250.2;(2)-π,1. 例3 解关于x的不等式:a2x+1≤ax-5(a>0,且a≠1). 反思与感悟 解指数不等式的基本方法是先化为同底指数式,再利用指数函数单调性化为常规的不等式来解,注意底数对不等号方向的影响.跟踪训练3 已知(a2+a+2)x>(a2+a+2)1-x,则x的取值范围是________.例4 (1)求函数y=的单调区间;(2)求函数y=2x-8·x+1
7、7的单调区间. 反思与感悟 复合函数单调性问题归根结底是由x18、函数f(x)=的递增区间为( )A.(-∞,0]B.[0,+∞)C.(-1,+∞)D.(-∞,-1)4.设0<a<1,则关于x的不等式的解集为________.5.若指数函数y=ax在[-1,1]上的最大值与最小值的差是1,则底数a=________.1.比较两个指数式值的大小的主要方法(1)比较形如am与an的大小,可运用指数函数y=ax的单调性.(2)比较形如am与bn的大小,一般找一个“中间值c”,若amc且c>bn,则am>bn.2.
8、函数f(x)=的递增区间为( )A.(-∞,0]B.[0,+∞)C.(-1,+∞)D.(-∞,-1)4.设0<a<1,则关于x的不等式的解集为________.5.若指数函数y=ax在[-1,1]上的最大值与最小值的差是1,则底数a=________.1.比较两个指数式值的大小的主要方法(1)比较形如am与an的大小,可运用指数函数y=ax的单调性.(2)比较形如am与bn的大小,一般找一个“中间值c”,若amc且c>bn,则am>bn.2.
此文档下载收益归作者所有