资源描述:
《关于matlab矩阵分解.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、(1)LU分解A是非奇异的,LU分解总是可以进行的。[L,U]=lu(X):产生一个上三角阵U和一个变换形式的下三角阵L(行交换),矩阵X必须是方阵。[L,U,P]=lu(X):产生一个上三角阵U和一个下三角阵L以及一个置换矩阵P,使之满足PX=LU。矩阵X必须是方阵。实现LU分解后,线性方程组Ax=b的解x=U(Lb)或x=U(LPb),这样可以大大提高运算速度。例7-2 用LU分解求解例7-1中的线性方程组。命令如下:A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];b=
2、[13,-9,6,0]';[L,U]=lu(A);x=U(Lb)或采用LU分解的第2种格式,命令如下:[L,U,P]=lu(A);x=U(LP*b)(2)QR分解对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一个上三角矩阵R的乘积形式。QR分解只能对方阵进行。MATLAB的函数qr可用于对矩阵进行QR分解,其调用格式为:[Q,R]=qr(X):产生一个一个正交矩阵Q和一个上三角矩阵R,使之满足X=QR。[Q,R,E]=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵R以及一个置换矩阵E,使之满足XE
3、=QR。实现QR分解后,线性方程组Ax=b的解x=R(Qb)或x=E(R(Qb))。例7-3 用QR分解求解例7-1中的线性方程组。命令如下:A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];b=[13,-9,6,0]';[Q,R]=qr(A);x=R(Qb)或采用QR分解的第2种格式,命令如下:[Q,R,E]=qr(A);x=E*(R(Qb))(3)Cholesky分解如果矩阵X是对称正定的,则Cholesky分解将矩阵X分解成一个下三角矩阵和上三角矩阵的乘积。设上
4、三角矩阵为R,则下三角矩阵为其转置,即X=R'R。MATLAB函数chol(X)用于对矩阵X进行Cholesky分解,其调用格式为:R=chol(X):产生一个上三角阵R,使R'R=X。若X为非对称正定,则输出一个出错信息。[R,p]=chol(X):这个命令格式将不输出出错信息。当X为对称正定的,则p=0,R与上述格式得到的结果相同;否则p为一个正整数。如果X为满秩矩阵,则R为一个阶数为q=p-1的上三角阵,且满足R'R=X(1:q,1:q)。实现Cholesky分解后,线性方程组Ax=b变成R‘Rx=b,所以x
5、=R(R’b)。例7-4 用Cholesky分解求解例7-1中的线性方程组。命令如下:A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];b=[13,-9,6,0]';R=chol(A)???Errorusing==>cholMatrixmustbepositivedefinite命令执行时,出现错误信息,说明A为非正定矩阵。