欢迎来到天天文库
浏览记录
ID:56386746
大小:203.50 KB
页数:6页
时间:2020-06-22
《四点共圆基本性质及证明.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、四点共圆如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角。以上性质可以根据圆周角等于它所对弧的度数的一半进行证明。1定理判定定理方法1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)方法2:把被证共圆
2、的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)托勒密定理若ABCD四点共圆(ABCD按顺序都在同一个圆上),那么ABDC+BCAD=ACBD。例题:证明对于任意正整数n都存在n个点使得所有点间两两距离为整数。解答:归纳法。我们用归纳法证明一个更强的定理:对于任意n都存在n个点使得所有点间两两距离为整数,且这n个点共圆,并且有两点是一条直径的两端。n=1,n=2很轻松。当n=3时,一个
3、边长为整数的勾股三角形即可:比如说边长为3,4,5的三角形。我们发现这样的三个点共圆,边长最长的边是一条直径。假设对于n大于等于3成立,我们来证明n+1。假设直径为r(整数)。找一个不跟已存在的以这个直径为斜边的三角形相似的一个整数勾股三角形ABC(边长a
4、,这四点共圆,于是PQ是一个有理数因为Ptolomy定理里的其它数都是整数。)引入一个新的点P增加了n个新的有理数距离,记这n个有理数的最大公分母为M。最后只需要把这个新的图扩大到原来的M倍即可。归纳法成立,故有这个命题。反证法证明现就“若平面上四点连成四边形的对角互补。那么这个四点共圆”证明如下(其它画个证明图如后)已知:四边形ABCD中,∠A+∠C=180°求证:四边形ABCD内接于一个圆(A,B,C,D四点共圆)证明:用反证法过A,B,D作圆O,假设C不在圆O上,点C在圆外或圆内,若点C在圆外,设BC交圆O于C
5、’,连结DC’,根据圆内接四边形的性质得∠A+∠DC’B=180°,∵∠A+∠C=180°∴∠DC’B=∠C这与三角形外角定理矛盾,故C不可能在圆外。类似地可证C不可能在圆内。∴C在圆O上,也即A,B,C,D四点共圆。2证明方法方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆周上,若能证明这一点,即可肯定这四点共圆.方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。几何描述:四边形ABCD中,∠BAC=∠BD
6、C,则ABCD四点共圆。证明:过ABC作一个圆,明显D一定在圆上。若不在圆上,可设射线BD与圆的交点为D',那么∠BD'C=∠BAC=∠BDC,与外角定理矛盾。方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。证法见上方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(相交弦定理的逆定理);或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一
7、线段两端点所成的两线段之积,即可肯定这四点也共圆.(割线定理的逆定理)上述两个定理统称为圆幂定理的逆定理,即ABCD四个点,分别连接AB和CD,它们(或它们的延长线)交点为P,若PAPB=PCPD,则ABCD四点共圆。证明:连接AC,BD,∵PAPB=PCPD∴PA/PC=PD/PB∵∠APC=∠BPD∴△APC∽△DPB当P在AB,CD上时,由相似得∠A=∠D,且A和D在BC同侧。根据方法2可知ABCD四点共圆。当P在AB,CD的延长线上时,由相似得∠PAC=∠D,根据方法3可知ABCD四点共圆。方法5证被证共圆的
8、点到某一定点的距离都相等,从而确定它们共圆.即连成的四边形三边中垂线有交点,可肯定这四点共圆.方法6四边形ABCD中,若有ABCD+ADBC=ACBD,即两对边乘积之和等于对角线乘积,则ABCD四点共圆。该方法可以由托勒密定理逆定理得到。托勒密定理逆定理:对于任意一个凸四边形ABCD,总有ABCD+ADBC≥ACBD,等号成立的条件是ABCD四
此文档下载收益归作者所有