欢迎来到天天文库
浏览记录
ID:56363273
大小:1.77 MB
页数:38页
时间:2020-06-12
《中考数学 第一章 数与式 第3讲整式课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、考点知识精讲中考典例精析第3讲 整 式考点训练举一反三考点一整式的有关概念1.单项式和多项式统称整式.单项式是指用乘号把数和字母连接而成的式子,而多项式是指几个单项式的_____.2.单项式中的数字因数叫做单项式的;单项式中所有字母的_______叫做单项式的次数.3.多项式中,每一个单项式叫做多项式的项,其中不含字母的项叫做常数项;多项式中次数的次数就是这个多项式的次数.和系数指数和最高项考点二整式的运算1.整式的加减(1)同类项与合并同类项所含的_____相同,并且_________________也分别相同的单项式叫做同类项.把多项式中的同类项合并成一项叫做合并同类项,
2、合并的法则是系数相加,所得的结果作为合并后的系数,字母和字母的______不变.(2)去括号与添括号①括号前是“+”号,去掉括号和它前面的“+”号,括号里的各项都不改变符号;括号前是“-”号,去掉括号和它前面的“-”号,括号里的各项___________.字母相同字母的指数指数都改变符号②括号前是“+”号,括到括号里的各项都不改变符号;括号前是“-”号,括到括号里的各项都改变符号.(3)整式加减的实质是合并同类项.温馨提示:在进行整式加减运算时,如果遇到括号,应根据去括号法则,先去括号,再合并同类项.当括号前是负号,去括号时,括号内每一项________.2.幂的运算同底数幂
3、相乘,底数不变,指数相加,即am·an=____(m、n都是整数)幂的乘方,底数不变,指数相乘,即(am)n=_____(m、n都是整数).积的乘方,等于把积的每一个因式分别乘方,再把所有的幂相乘,am+namn都要变号即(ab)n=anbn(n为整数).同底数幂相除,底数不变,指数相减,即am÷an=_____(a≠0,m、n都为整数).3.整式的乘法单项式与单项式相乘,把系数、同底数幂分别相乘,作为积的因式,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加,即m(a+b+c)=___
4、_________.多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,即(m+n)(a+b)=ma+mb+na+nb.am-nma+mb+mc4.整式的除法单项式除以单项式,把_______________分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式,把这个多项式的每一项除以这个单项式,然后把所得的商相加.5.乘法公式(1)平方差公式两个数的和与这两个数的差的积,等于这两个数的平方差,即(a+b)(a-b)=_______.(2)完全平方公式系数、同底数幂a2-b2两数和(或差)的平方,等
5、于它们的平方和加上(或减去)它们的积的2倍,即(a±b)2=___________.考点三因式分解1.因式分解的定义及与整式乘法的关系(1)__________________________________,这种运算就是因式分解.(2)因式分解与整式乘法是互逆运算.2.因式分解的常用方法(1)提公因式法如果一个多项式的各项都含有一个相同的因式,那么这个相同的因式,就叫做公因式.a±2ab+b2把一个多项式化为几个整式的积的形式提公因式法用公式可表示为ma+mb+mc=___________,其分解步骤为:①确定多项式的公因式:公因式为各项系数的最大公约数与相同字母的最低次幂
6、的乘积.②将多项式除以它的公因式从而得到多项式的另一个因式.(2)运用公式法将乘法公式反过来对某些多项式进行因式分解,这种方法叫做公式法,即a2-b2=____________,a2±2ab+b2=________.温馨提示:在运用公式法分解因式时,公式中的字母,可以是一个数,也可以是一个单项式,还可以是一个多项式.m(a+b+c)(a+b)(a-b)(a±b)23.因式分解的一般步骤(1)一提:如果多项式的各项有公因式,那么先提公因式;(2)二用:如果各项没有公因式,那么可以尝试运用公式法来分解;(3)三查:分解因式,必须进行到每一个多项式都不能再分解为止.(1)(2011
7、·吉林)下列计算正确的是()A.a+2a=3a2B.a·a2=a3C.(2a)2=2a2D.(-a2)3=a6(2)(2011·扬州)下列计算正确的是()A.a2·a3=a6B.(a+b)(a-2b)=a2-2b2C.(ab3)2=a2b6D.5a-2a=3(3)(2011·桂林)下列运算正确的是()A.3x2-2x2=x2B.(-2a)2=-2a2C.(a+b)2=a2+b2D.-2(a-1)=-2a-1【点拨】(1)题考查幂的四种运算,正确掌握运算法则是关键;(2)、(3)题均从四个方面考查整式的运
此文档下载收益归作者所有