几何中线段的最值问题.doc

几何中线段的最值问题.doc

ID:56270213

大小:798.00 KB

页数:13页

时间:2020-06-05

几何中线段的最值问题.doc_第1页
几何中线段的最值问题.doc_第2页
几何中线段的最值问题.doc_第3页
几何中线段的最值问题.doc_第4页
几何中线段的最值问题.doc_第5页
资源描述:

《几何中线段的最值问题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.几何中线段的最值问题一、一条线段的最值问题一(1)借助旋转求最值2013通州一模24.已知:,,以AB为一边作等边三角形ABC.使C、D两点落在直线AB的两侧.(1)如图,当∠ADB=60°时,求AB及CD的长;(2)当∠ADB变化,且其它条件不变时,求CD的最大值,及相应∠ADB的大小.ADBC2011丰台一模25.已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD=;(2)如图2,当点D与点C位

2、于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD=;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求CD的最大值及相应的∠ACB的度数...图1图2图3(2)借助直角三角形性质求最值(1)勾股定理(2)直角三角形斜边中线等于斜边一半(3)直角三角形斜边的两条重要的线段,一是斜边上的高,另一个是斜边上的中线,直角三角形斜边上的高是直角顶点到斜边上所有点之中距离最短的,其长度可以用两直角边乘积除以斜边求得.【例1】如图,在ΔABC中,∠C=90°,AC=2,BC=1,点A、C分别在x轴、y轴上,

3、当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是【例2】如图,△ABC是边长为定值m的正三角形,C点与原点重合,点B在第一象限点,点A在x轴上。②求出AC边上的高线BD的长度;③当点C在y轴的正半轴滑动时,试求出点O到CA距离的最大值;④已知点P是△ABC内切圆的圆心,请求出OP的最大值。..2011海淀一模25.在Rt△ABC中,∠ACB=90°,tan∠BAC=.点D在边AC上(不与A,C重合),连结BD,F为BD中点.(1)若过点D作DE⊥AB于E,连结CF、EF、CE,如图1.设

4、,则k=;(2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE-DE=2CF;(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值...2010海淀一模25.已知:中,,中,,.连接、,点、、分别为、、的中点.图1图2(1)如图1,若、、三点在同一直线上,且,则的形状是________________,此时________;(2)如图2,若、、三点在同一直线上,且,证明,并计算的值(用含的式子表示);(3)在图2中

5、,固定,将绕点旋转,直接写出的最大值.28.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,..作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.(3)与圆相关2014燕山24.如

6、图1,已知是等腰直角三角形,,点是的中点.作正方形,使点、分别在和上,连接,.(1)试猜想线段和的数量关系是;(2)将正方形绕点逆时针方向旋转,①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若,当取最大值时,求的值...2013昌平一模24.在△ABC中,AB=4,BC=6,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△CBC1的面积为3,求△ABA1的面积;(3)如图3,点E

7、为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转的过程中,点P的对应点是点P1,直接写出线段EP1长度的最大值与最小值.2015房山一模28.如图1,已知线段BC=2,点B关于直线AC的对称点是点D,点E为射线CA上一点,且ED=BD,连接DE,BE.(1)依题意补全图1,并证明:△BDE为等边三角形;(2)若∠ACB=45°,点C关于直线BD的对称点为点F,连接FD、FB.将△CDE绕点D顺时针旋转α度(0°<α<360°)得到△,点E的对应点为E′,点C的对应点为点C′.①如图2,当α=30

8、°时,连接.证明:=;..  ②如图3,点M为DC中点,点P为线段上的任意一点,试探究:在此旋转过程中,线段PM长度的取值范围?图1图2图33.如图,已知△是等腰直角三角形,,点是的中点.作正方形,使点分别在和上,连接.(1)试猜想线段和的数量关系,请直接写出你得到的结论.(2)将正方形绕点逆时针方向旋转一定角度后(旋转角度大于,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。