欢迎来到天天文库
浏览记录
ID:56166688
大小:518.50 KB
页数:7页
时间:2020-06-20
《吉林省扶余县2012-2013学年高一数学上学期期末考试试题 理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、吉林省扶余一中2012-2013学年高一数学上学期期末考试试题理本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。考试结束后,只交答题纸和答题卡,试题自己保留。第I卷(60分)注意事项1.答题前,考生在答题纸和答题卡上务必用直径0.5毫米黑色签字笔将自己的班级、姓名、考号填写清楚。请认真核准考号、姓名和科目。2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。在试题卷上作答无效。3.本试卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项符合要求。一、(共60分,每小题5分)1.若
2、两条直线都与一个平面平行,则这两条直线的位置关系是( )A.平行B.相交C.异面D.以上均有可能2.三个平面把空间分成7部分时,它们的交线有A.1条 B.2条 C.3条 D.1或2条3.过点(1,0)且与直线平行的直线方程是A.B.C.D.4.设、是两条不同的直线,是一个平面,则下列命题正确的是A.若,,则B.若,,则C.若,,则D.若,,则5.正方体ABCD—A1B1C1D1中,E、F分别是AB、B1C的中点,则EF与平面ABCD所成的角的正切值为( )A.2B.C.D.-7-6.边长为a的正方形ABCD沿对角线AC将△ADC折起,若∠DAB=60°,
3、则二面角D—AC—B的大小为( )A.60°B.90°C.45°D.30°7.在正方体ABCD—A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于( )A.ACB.BDC.A1DD.A1D8.如果一条直线垂直于一个平面内的①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边,则能保证该直线与平面垂直的是( )A.①③ B.②C.②④D.①②④9.BC是Rt△ABC的斜边,AP⊥平面ABC,PD⊥BC于点D,则图中共有直角三角形的个数是( )A.8B.7C.6D.510.圆C:x2+y2+2x+4y-3=0上到直线:x+y+1=
4、0的距离为的点共有A.1个 B.2个 C.3个 D.4个11.求经过点的直线,且使,到它的距离相等的直线方程.A.B.C.,或D.,或12.当点P在圆x2+y2=1上变动时,它与定点Q(3,0)相连,线段PQ的中点M的轨迹方程是( )A.(x+3)2+y2=4B.(x-3)2+y2=1C.(2x-3)2+4y2=1D.(2x+3)2+4y2=1第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把正确答案填在答题卡的横线上,填在试卷上的答案无效)13.经过圆的圆心,并且与直线垂直的直线方程为___-7-__.14.以A(4,3,1),B(
5、7,1,2),C(5,2,3)为顶点的三角形形状为.15.已知实数满足,则的最小值为________.16.半径为R的球放在墙角,同时与两墙面和地面相切,那么球心到墙角顶点的距离为______.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分10分)过点的直线与轴的正半轴、轴的正半轴分别交于点、,为坐标原点,的面积等于6,求直线的方程.18.(本小题满分12分)如图,垂直于⊙所在的平面,是⊙的直径,是⊙上一点,过点作,垂足为.求证:平面19.(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E、
6、F为棱AD、AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.-7-20.(本小题满分12分)已知圆C:,直线L:(1)证明:无论取什么实数,L与圆恒交于两点;(2)求直线被圆C截得的弦长最小时直线L的斜截式方程.21.(本小题满分12分)已知圆与圆(其中)相外切,且直线与圆相切,求的值.22.(本小题满分12分)已知动点M到点A(2,0)的距离是它到点B(8,0)的距离的一半,求:(1)动点M的轨迹方程;(2)若N为线段AM的中点,试求点N的轨迹.-7-高一数学参考答案18.证明:因为平面所以又因为是⊙的直径,是⊙上
7、一点,所以所以平面而平面所以又因为,所以平面ABCDA1B1C1D1EF19.证明:(1)连结BD.在正方体中,对角线.又E、F为棱AD、AB的中点,..又B1D1平面,平面,EF∥平面CB1D1.(2)在正方体中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1,-7-AA1⊥B1D1.又在正方形A1B1C1D1中,A1C1⊥B1D1,B1D1⊥平面CAA1C1.又B1D1平面CB1D1,平面CAA1C1⊥平面CB1D1.21.解:由已知,,圆的半径;,圆的半径.因为圆与圆相外切,所以.整理,得.又因为,所以.因为直线与圆相切,所以,即.两边平方
8、后,整理得,所以或.22.解:(1)设
此文档下载收益归作者所有