欢迎来到天天文库
浏览记录
ID:56132698
大小:366.50 KB
页数:5页
时间:2020-06-20
《《一元一次程》全章复习与巩固(基础)知识讲解.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《一元一次方程》全章复习与巩固(基础)知识讲解撰稿:孙景艳审稿:赵炜【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】[来源:学科网]【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知
2、数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母的指数不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项
3、的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常
4、见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:.【典型例题】类型一、一元一次方程的概念1.下列方程中,哪些是一元一次方程?哪些不是?(1);(2)2x+y=5;(3)x2-5x+6=0;(4);(5).【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案】(1)、(
5、5)是一元一次方程.因为它们或等价变形后是只含有一个未知数、并且未知数的次数是1的方程;(2)、(3)、(4)都不是一元一次方程,因为(2)中含有两个未知数;(3)中未知数的最高次数是2;(4)中分母含有未知数,它不是整式方程.【解析】判断一个方程是不是一元一次方程,有时需要对方程进行等价变形后再判断.例如:,可化为:,所以是一元一次方程.【总结升华】凡是分母中含有未知数的方程一定不是一元一次方程.举一反三:【高清课堂:一元一次方程复习393349等式和方程例(1)】【变式】下列说法中正确的是().A.2a-a=a不是等式B.x2-2x-3是方程C.方程是等式D.等式是方
6、程【答案】C2.若方程3(x-1)+8=2x+3与方程的解相同,求k的值.【答案与解析】解:解方程3(x-1)+8=2x+3,得x=-2.将x=-2代入方程中,得.解这个关于k的方程,得.所以,k的值是.【总结升华】由于两个方程的解相同,所以可以将其中一个方程的解代入另一个方程中,从而求得问题的答案.举一反三:【变式】若关于x的方程2(x-1)-a=0的解是x=3,则a的值是().A.4B.-4C.5D.-5【答案】A.类型二、一元一次方程的解法3.解方程【思路点拨】通过方程的同解原理(去分母,去括号,合并同类项,系数化为1),一步一步将一个复杂的方程转化成与它同解的最简
7、的方程,从而达到求解的目的.【答案与解析】解:去分母,得3(y+2)-2(3-5y)=12去括号,得3y+6-6+10y=12合并同类项,得13y=12未知数的系数化为1,得【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.4.解方程:【思路点拨】本题按常规方法求解,比较繁锁,如能根据题目的特点,巧用“整体思维”,就能算得又快又对,起到事半功倍的效果.【答案
此文档下载收益归作者所有