拋物线及其标准方程.doc

拋物线及其标准方程.doc

ID:56088708

大小:48.00 KB

页数:7页

时间:2020-06-19

拋物线及其标准方程.doc_第1页
拋物线及其标准方程.doc_第2页
拋物线及其标准方程.doc_第3页
拋物线及其标准方程.doc_第4页
拋物线及其标准方程.doc_第5页
资源描述:

《拋物线及其标准方程.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、拋物线及其标准方程教学目标1.理解拋物线的定义,掌握拋物线的标准方程及其推导。明确拋物线标准方程中的几何意义,能解决简单的求拋物线标准方程问题。2、通过对拋物线和椭圆、双曲线离心率的比较,体会三种圆锥曲线内在的区别和联系。3、熟练掌握求曲线方程的基本方法,通过四种不同形式标准方程的对比,培养学生分析、归纳的能力。4.营造亲切、和谐的氛围,以“趣”激学。引导学生用运动变化的观点发现问题、探索问题、解决问题,培养学生的创新意识,体会数学的简捷美、和谐美。培养合作学习的意识,体会成功带来的喜悦。发展数学应用意识,认识数学的应用价值。教学重点:拋物线的定义及其标准方程的推导。通过学生自主建立直角坐标系

2、和对方程的讨论选择突出重点。教学难点:拋物线概念的形成。通过条件的画法设计,标准方程与二次函数的比较突破难点。教学过程设计一.设置情景,导入新课(借助多媒体)先给出一张姚明的图片。(此时学生的兴趣来啦!)师:姚明是我们中国人的骄傲,我们要向他学习!大家都知道姚明的投篮非常精准!为什么呢?生:天赋、身高!生:勤奋练习!(再给出两张姚明的图片)生:与投篮时的弧线有关!生:这弧线是抛物线!师:对!姚明有许多优越的先天条件,同时好的技术也是一个关键的因素,今天我们就着手研究这个内容。(进而引出本节研究的课题:抛物线及其标准方程)【学情预设】学生被教师设置的情景所吸引,学习的热情高涨。【设计意图】一个引

3、人入胜的开头会拓宽学生思路,尊重学生的生命活动,激发兴趣,陶冶情操,大大提高教学效率。二.引导探究,获得新知师:在初中我们已经从函数角度学过抛物线,那么,这一节课我们将冲破初中的界限从曲线和方程的角度来学习抛物线。师:前面,我们学习了椭圆和双曲线的相关知识,那么它们的联系和差异是什么?生:定义不一样!生:方程!椭圆是,双曲线是。师:还有吗?生:椭圆是封闭的,双曲线是开放的。师:这只是图象不同,为什么会这样呢?生:第二定义!就是它们到定点的距离与到定直线的距离的比等于一个常数!生:这个常数是离心率!师:对啊!这是定性上的,定量上有不同吗?生:离心率不同,椭圆离心率的范围是,双曲线离心率的范围是。

4、师:对了,可看成是它们的相同点,又是不同点师:现在我慢慢拖动,大家认真观察图象。生:是椭圆,是双曲线。师:但你们有没观察到时的图象?生:抛物线!【学情预设】学生认真观察图象的变化,认知的图象就是抛物线。【设计意图】不仅回顾了椭圆与双曲线的相关内容,而且为如何画抛物线奠定坚实基础。师:这抛物线是怎么画出来的啊!(课堂顿时一片寂静)师:那这条抛物线与什么有关?众生:!师:是什么意思?生:到定点的距离等于到定直线的距离!师:回答得很好!那你们能据此设计一种方案,画出这样的点吗?(一段时间后,让学生汇报自己的设计方案,并用实物投影仪展示学生所画的图形,师生共同就方案的可行性进行论证。)(在直线上找特殊

5、点)(在第一象限找特殊点)(在第一象限找所有点)【活动设计】前后学生组成四人小组,探讨画图方案。【教师活动】教师以平等的身份介入学生的讨论中,并且关注:1.学生在知识认知与情感发展方面的疑惑,及时引导鼓励;2.关注每个人的活动情况,做到全员参与,从同学们的探究中,了解学生对知识理解的不同程度,思考的不同方向,对有代表性的方案注意收集;3.了解学生探究的进展,把握课堂节奏。【学情预设】学生可能找到个别点,教师应指导学生设计好如上图中的方案。【设计意图】着重培养学生合情推理与逻辑思维能力,增强学生的学习兴趣,增强学生的自信心。师:同学们的设计让我们看到了这条曲线上的一个点,那么怎么画满足的图象呢?

6、(课堂又一片寂静)(出示预先准备的圆锥曲线教具)师:现在我介绍这个教具的用法,将直尺与定直线重合,竖直固定在黑板上,再将磁铁固定在定点上,拉紧白线,就可以画出来了。谁上来试试?(两位学生积极上台板演)师:这两位同学表现非常好!这就是我们见过的拋物线!【活动设计】两位学生上台演示教具画抛物线的过程。【学情预设】教师应先介绍教具的使用方法,然后学生尝试。在尝试的过程中,学生可能会遇到困难,教师应给予指导。【设计意图】体现数学实践在数学学习中的地位和作用,同时教师应多鼓励学生,多引导学生间进行合作交流,培养合作学习的意识,体验成功带来的喜悦。师:接下来我也来演示下抛物线的形成过程。(打开几何画板软件

7、)师:认真观察点的运动过程,你们有什么发现?(利用几何画板软件同步动态演示)生:和等于,所以点在运动时,始终等于。师:这位同学观察很敏锐,直接抓住关键地方!师:那这样画出来的图象也是?众生:抛物线!师:很好!【活动设计】利用几何画板软件演示抛物线的形成过程。【学情预设】学生惊讶!计算机软件居然能演示抛物线形成的过程,学生学习的兴趣再次调动起来!【设计意图】强调“在操作中促进学习”,体现数学实验在学

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。