中考数学全程复习方略专题复习突破篇六二次函数压轴题课.ppt

中考数学全程复习方略专题复习突破篇六二次函数压轴题课.ppt

ID:55992297

大小:1.59 MB

页数:52页

时间:2020-06-13

中考数学全程复习方略专题复习突破篇六二次函数压轴题课.ppt_第1页
中考数学全程复习方略专题复习突破篇六二次函数压轴题课.ppt_第2页
中考数学全程复习方略专题复习突破篇六二次函数压轴题课.ppt_第3页
中考数学全程复习方略专题复习突破篇六二次函数压轴题课.ppt_第4页
中考数学全程复习方略专题复习突破篇六二次函数压轴题课.ppt_第5页
资源描述:

《中考数学全程复习方略专题复习突破篇六二次函数压轴题课.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题六二次函数压轴题1.主要类型:(1)线段及周长最值问题(2)面积最值问题(3)存在性问题探究2.规律方法:(1)解决线段和的最小值或三角形周长最小问题,主要依据是“两点之间,线段最短”,具体方法是利用轴对称将两条线段之和转化为一条线段的长,然后求出该条线段的长.(2)解决图形面积的最值问题,通常先设出动点坐标,然后表示出图形面积,利用二次函数性质来求最大值或最小值,表示不规则图形的面积时,通常采用割补法把其转化为易于表示面积的图形(有一边在坐标轴上或平行于坐标轴).(3)解决存在性问题要先假设结论成立,然后根据所探究特殊图形的

2、有关性质,利用分类讨论的数学思想构造全等或相似图形,进而求出字母的取值.3.渗透的思想:分类讨论、转化思想、数形结合、函数与方程等.类型一 线段及周长最值问题【考点解读】1.考查范畴:线段和周长最值问题主要包括线段和的最小值、周长和的最小值和线段差的最大值三种情况.2.考查角度:利用二次函数解析式确定有关点的坐标,结合某个动点考查两条线段和或差的最值问题.【典例探究】【典例1】(2018·宜宾节选)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A,B两点,直线l为y=-

3、1.(1)求抛物线的解析式.(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.【思路点拨】(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式.(2)联立直线AB与抛物线解析式组成方程组,通过解方程组可求出点A,B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A,B′的坐标利用待定系数法可求出直线AB′的解析式,再利

4、用一次函数图象上点的坐标特征即可求出点P的坐标.【自主解答】略【规律方法】解决线段和最小值问题的方法(1)解题的基本依据是“两点之间,线段最短”,如图所示,若A,B是两个定点,动点P在直线m上,求PA+PB的最小值的方法是:作点A关于直线m的对称点A′,当A′,P,B三点共线时PA+PB最小.(2)确定动点P的位置后,再根据两条直线的解析式联立组成方程组,进而求出交点P的坐标.【题组过关】1.(2019·烟台中考)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(-1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线

5、于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.(1)求抛物线的解析式.(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标.(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)略2.(2019·贺州中考)如图,在平面直角坐标系中,已知点B的坐标为(-1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.世纪金榜导学号(1)求A,

6、C两点的坐标.(2)求抛物线的解析式.(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.【解析】(1)OA=OC=4OB=4,故点A,C的坐标分别为(4,0),(0,-4).(2)抛物线的解析式为:y=a(x+1)(x-4)=a(x2-3x-4),即-4a=-4,解得:a=1,故抛物线的解析式为:y=x2-3x-4.(3)直线CA过点C,设其函数解析式为:y=kx-4,将点A坐标代入上式并解得:k=1,故直线CA的解析式为:y=x-4,过点P作y轴的平行线交AC于

7、点H,∵OA=OC=4,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,设点P(x,x2-3x-4),则点H(x,x-4),PD=HPsin∠PHD=(x-4-x2+3x+4)=-x2+2x,∵-<0,∴PD有最大值,当x=2时,其最大值为2,此时点P(2,-6).类型二 面积最值问题【考点解读】1.考查范畴:以二次函数为背景,面积最值问题主要包括三角形面积问题和四边形面积问题.2.考查角度:建立几何图形面积与动点的坐标的二次函数关系,然后确定最值.【典例探究】典例2(2019·海南中考节选)如图,已知抛

8、物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x轴的另一个交点为C,顶点为D,连接CD.(1)求该抛物线的解析式.(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.当点P在直线BC的下方运动时,求△PBC的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。