欢迎来到天天文库
浏览记录
ID:55928349
大小:1.79 MB
页数:22页
时间:2020-06-15
《2017-2019高考文数真题分类解析---平面解析几何(选择题、填空题).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2017-2019高考文数真题分类解析----平面解析几何(选择题、填空题)1.【2019年高考浙江卷】渐近线方程为x±y=0的双曲线的离心率是A.B.1C.D.2【答案】C【解析】因为双曲线的渐近线方程为,所以,则,所以双曲线的离心率.故选C.【名师点睛】本题根据双曲线的渐近线方程可求得,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.2.【2019年高考全国Ⅰ卷文数】双曲线C:的一条渐近线的倾斜角为130°,则C的离
2、心率为A.2sin40°B.2cos40°C.D.【答案】D【解析】由已知可得,,故选D.【名师点睛】对于双曲线:,有;对于椭圆,有,防止记混.3.【2019年高考全国Ⅰ卷文数】已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A.B.C.D.【答案】B【解析】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得.所求椭圆方程为,故选B.法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B.【名师
3、点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.4.【2019年高考全国Ⅱ卷文数】若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=A.2B.3C.4D.8【答案】D【解析】因为抛物线的焦点是椭圆的一个焦点,所以,解得,故选D.【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于的方程,从而解出,或者利用检验排除的方法,如时,抛物线焦点为(1,0),椭圆焦点为(±2
4、,0),排除A,同样可排除B,C,从而得到选D.5.【2019年高考全国Ⅱ卷文数】设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若
5、PQ
6、=
7、OF
8、,则C的离心率为A.B.C.2D.【答案】A【解析】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,∴,,又点在圆上,,即.,故选A.【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重
9、点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a的关系,可求双曲线的离心率.6.【2019年高考全国Ⅲ卷文数】已知F是双曲线C:的一个焦点,点P在C上,O为坐标原点,若,则的面积为A.B.C.D.【答案】B【解析】设点,则①.又,②.由①②得,即,,故选B.【名师点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.设,由,再结合双曲线方程可解出,利用三角形面积公式可求出结果.7.【2019年高考北京卷文数】已知双曲线
10、(a>0)的离心率是,则a=A.B.4C.2D.【答案】D【解析】∵双曲线的离心率,,∴,解得,故选D.【名师点睛】本题主要考查双曲线的离心率的定义,双曲线中a,b,c的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.8.【2019年高考天津卷文数】已知抛物线的焦点为F,准线为l.若l与双曲线的两条渐近线分别交于点A和点B,且(O为原点),则双曲线的离心率为A.B.C.2D.【答案】D【解析】抛物线的准线的方程为,双曲线的渐近线方程为,则有,∴,,,∴.故选D.【名师点睛】本题考查抛物线和双曲线的
11、性质以及离心率的求解,解题关键是求出AB的长度.解答时,只需把用表示出来,即可根据双曲线离心率的定义求得离心率.9.【2018年高考全国Ⅰ卷文数】已知椭圆:的一个焦点为,则的离心率为A.B.C.D.【答案】C【解析】由题可得,因为,所以,即,所以椭圆的离心率,故选C.【名师点睛】本题主要考查椭圆的方程及离心率,考查考生的运算求解能力,考查的数学核心素养是数学运算.在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中的关系求得结果.10.【2018年高考全国Ⅱ卷文数】已知,是
12、椭圆的两个焦点,是上的一点,若,且,则的离心率为A.B.C.D.【答案】D【解析】在中,,设,则,又由椭圆定义可知,则,故选D.【名师点睛】本题主要考查椭圆的定义和简单的几何性质,考查考生的数形结合能力、运算求解能力,考查的数学核心素养是直观想象、数学运算.结合有关平面几何的知识以及椭圆的定义、性质加以灵活分析,关键是寻找椭圆中a,c满足的关系式.椭圆定义的
此文档下载收益归作者所有