从不同的角度看矩阵的行秩与列秩.doc

从不同的角度看矩阵的行秩与列秩.doc

ID:55897121

大小:82.50 KB

页数:13页

时间:2020-06-13

从不同的角度看矩阵的行秩与列秩.doc_第1页
从不同的角度看矩阵的行秩与列秩.doc_第2页
从不同的角度看矩阵的行秩与列秩.doc_第3页
从不同的角度看矩阵的行秩与列秩.doc_第4页
从不同的角度看矩阵的行秩与列秩.doc_第5页
资源描述:

《从不同的角度看矩阵的行秩与列秩.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、tianpeng.72pines./从不同的角度看矩阵的行秩与列秩——兼论如何学好线性代数线性代数中,有那么几个神秘又神奇的东西,总是让初学它的人琢磨不透,无法理解,其中就有矩阵的行向量和列向量的关系,为什么一个矩阵的行向量里有多少个线性无关的向量,列向量里就一定也有多少个线性无关的向量呢?或者考虑稍微简单一点的问题,一个方阵,为什么行向量线性无关或线性相关列向量就一定也线性无关或相关呢?行秩为何等于列秩?这本来应该是一个基本又简单的事实。但是,请回忆一下你当初初学线性代数时的容编排顺序,是怎么

2、引入这个问题的,当时又是怎样解决这个问题的?传统的教材编写思路是从线性方程组开始整个线性代数话题的引入,这个过程中定义行列式和矩阵,用n元数组引入向量,线性相关和无关等概念,讨论解存在的条件,解的结构,等等。总之,一切以方程组为核心,给人的感觉就是线性代数就是方程组的理论,一切讨论的目的都是为了解决小小的方程组问题。在这个过程中,有一个矩阵行秩等于列秩的命题,此时学生只了解方程组理论和行列式,因此这时对这个问题的解释当然也无法离开方程组或行列式。下面简述两个典型的教材中的证明方法:第一个证明来自

3、志杰《高等代数与解析几何》。证明:首先,矩阵的初等行变换不改变矩阵的行秩,初等列变换不改变矩阵的列秩。这是由向量组的初等变换不改变向量组的线性相关或无关性保证的,即将某个向量乘以非零的倍数、将某个向量加到另一个向量上,都不改变向量组的线性相关或无关性。接着证明矩阵的初等行变换不改变矩阵的列秩。设A是m*n阶矩阵,任意从A的n个列向量中选取k个列向量a1,a2,…,ak,它们线性无关的充要条件是线性方程组a1×1+a2×2+…+akxk=0只有零解。而对矩阵A进行初等行变换不改变此方程组的解,因此

4、不改变这k个列向量的线性相关或无关性。这说明A的列向量的秩在矩阵的初等行变换中不变。同理矩阵的初等列变换不改变矩阵的行秩。接下来,可以把A经过初等行变换和初等列变为只有对角线上有1或0,其它位置都为0的矩阵,在这个过程中行秩和列秩都不改变,从这个矩阵中看出行秩等于列秩,因此原来的矩阵行秩也等于列秩。第二个证明来自北大数学系几何与代数教研室前代数小组编《高等代数》证明:考虑线性方程组AX=0,首先证明如果未知数的个数超过A的行秩,那么它有非零解。设m*n阶矩阵A的行秩为r,考虑方程组AX=0,它由

5、m个方程n个未知数组成。从A的行向量中选取r个线性无关的行向量,重新组合成矩阵B,那么方程组AX=0和BX=0同解。这时,如果B的列数大于行数,那么方程组BX=0必有非零解,从而AX=0也有非零解。接着证明行秩等于列秩。设m*n阶矩阵A的行秩为r,列秩为s。考虑A的任意r+1个列向量组成的矩阵C,因为C的行秩不大于r(因为C的行向量都是A的行向量的一部分分量组成的),所以CX=0有非零解,这说明这r+1个列向量线性相关。所以A的列秩最大为r,即s<=r。同理可证r<=s,因此s=r。有了行秩等于

6、列秩的性质,完全可以用行秩或列秩定义矩阵的秩了。编写教材的人和老师们都认为,只要能够顺利定义出矩阵的秩,这个证明就足以满足初学时的需要了,既没有必要又没有条件再将它深入地挖掘下去。但是它仍然让我困惑,即使把书上的这个证明看得明明白白,也不理解为什么行秩等于列秩。因为向量是个几何的概念,现在这个证明中看不出一点几何上向量的影子,这两个例子都依赖于线性方程组理论,都离不开高斯消元法,都是代数上的推导。虽然从代数上推导出了这个结果,但是在几何上我依然无法接受这个结果。矩阵的行向量和列向量“从图形上”到

7、底是什么关系?可不可以让我一下子就能看出来它们的秩是相等的?尽管经过了行列变换之后行列秩相等是显然的,但这个过程中却把原来的行列向量给变得面目全非了。更有甚者,有些教材上竟然用矩阵的子式和行列式理论推导行秩等于列秩,由于这种证明过于复杂,这里就不列出了。直到最近的一次偶然机会,又让我想起了这个问题。一开始,发现它和对偶空间与对偶映射有关系。记得当初学习线性代数时,直到最后才接触了一些有关对偶空间和对偶映射的知识,教材还写得十分抽象,以至于我们都囫囵吞枣地过来了,根本没有什么印象。后来的泛函,因为

8、高等代数理解不深人,对泛函也没有留下什么印象。最近有同事让我讲线性代数,有很多次问我关于矩阵转置的意义的问题。他曾经学习线性代数时对很多问题不理解,其中就有矩阵转置到底对应几何上的什么东西,为什么要转置?其实我也没考虑过这个问题,只知道这是代数的特殊需要,当需要把行向量变成列向量的时候就需要考虑转置,它完全是代数上的处理方式。至于在几何上代表什么意义,我也曾困惑过,但一直没考虑清楚。然而现在比大一那个时候多了一个学习的更加有效的途径,那就是网络。在wiki百科中,我查到了一个观点:在标准正交基底

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。