《回归分析的基本思想及其初步应用》课件.ppt

《回归分析的基本思想及其初步应用》课件.ppt

ID:55816684

大小:427.00 KB

页数:25页

时间:2020-06-08

《回归分析的基本思想及其初步应用》课件.ppt_第1页
《回归分析的基本思想及其初步应用》课件.ppt_第2页
《回归分析的基本思想及其初步应用》课件.ppt_第3页
《回归分析的基本思想及其初步应用》课件.ppt_第4页
《回归分析的基本思想及其初步应用》课件.ppt_第5页
资源描述:

《《回归分析的基本思想及其初步应用》课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、回归分析选修2-31、两个变量的关系不相关相关关系函数关系线性相关非线性相关问题1:现实生活中两个变量间的关系有哪些?相关关系:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系。2、现实生活中存在着大量的相关关系。如:人的身高与年龄;产品的成本与生产数量;商品的销售额与广告费;家庭的支出与收入。等等探索:水稻产量y与施肥量x之间大致有何规律?1020304050500450400350300·······发现:图中各点,大致分布在某条直线附近。探索2:在这些点附近可画直线不止一条,哪条直线最能代表x与y之间的关系呢?xy施化肥量水稻产量施化肥

2、量x15202530354045水稻产量y330345365405445450455散点图最小二乘法:称为样本点的中心。1、已知回归直线斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为()C练习:200703262、某考察团对全国10个城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x具有相关关系,回归方程y=0.66x+1.562,若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为…………()A.83%B.72%C.67%D.66%A问题2:对于线性相关的两个变量用什么方法来刻划之间的

3、关系呢?2、最小二乘估计最小二乘估计下的线性回归方程:例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。问题一:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型。解:1、选取身高为自变量x,体重为因变量y,作散点图:2.回归方程:探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?由于所有的样

4、本点不共线,而只是散布在某一直线的附近,所以身高和体重的关系可以用线性回归模型来表示:注:随机误差e包含预报体重不能由身高的线性函数解释的所有部分。函数模型与“回归模型”的关系函数模型:因变量y完全由自变量x确定回归模型:预报变量y完全由解释变量x和随机误差e确定问题二:在线性回归模型中,e是用bx+a预报真实值y的随机误差,它是一个不可观测的量,那么应如何研究随机误差呢?结合例1除了身高影响体重外的其他因素是不可测量的,不能希望有某种方法获取随机误差的值以提高预报变量的估计精度,但却可以估计预报变量观测值中所包含的随机误差,这对我们查找样本数据中的错误和模型的评价极为有用

5、,因此在此我们引入残差概念。问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?(1)我们可以通过分析发现原始数据中的可疑数据,判断建立模型的拟合效果。残差图的制作和作用:制作:坐标纵轴为残差变量,横轴可以有不同的选择.横轴为编号:可以考察残差与编号次序之间的关系,横轴为解释变量:可以考察残差与解释变量的关系,作用:判断模型的适用性若模型选择的正确,残差图中的点应该分布在以横轴为中心的带形区域.下面表格列出了女大学生身高和体重的原始数据以及相应的残差数据。残差图的制作及作用。坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以横轴为心的

6、带形区域;对于远离横轴的点,要特别注意。身高与体重残差图异常点错误数据模型问题几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。R2越接近1,表示回归的效果越好(因为

7、R2越接近1,表示解析变量和预报变量的线性相关性越强)。如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。注:相关指数R2是度量模型拟合效果的一种指标。在线性模型中,它代表自变量刻画预报变量的能力。(2)我们可以用相关指数R2来刻画回归的效果,其计算公式是问题四:若两个变量呈现非线性关系,如何解决?(分析例2)例2一只红铃虫的产卵数y和温度x有关。现收集了7组观测数据列于表中:温度xoC21232527293235产卵数y/个71121246

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。