欢迎来到天天文库
浏览记录
ID:5579753
大小:115.50 KB
页数:9页
时间:2017-12-19
《数学常识——自然数》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、数学知识常识2:自然数用以计量事物的件数或表示事物次序的数。即用数码(0,)1,2,3,4,……所表示的数(有争议)。表示物体个数的数叫自然数,自然数由1(0,有争议)开始,一个接一个,组成一个无穷的集体。概述自然数从0开始还是从1开始饱受争议。从数论上来讲,自然数从1开始,在集合论中,自然数从0开始。我国中小学教材中自然数是从0开始,《新华字典》中自然数是从1开始。可以指正整数或非负整数,在数论通常用前者,而集合论和计算机科学则多数使用后者。[1]数学术语自然数集是全体非负整数组成的集合,常用N来表示。自然数有无穷无尽的个数。【拼音】zìránshù【英译】natur
2、alnumber[2]一般概念自然数是一切等价有限集合共同特征的标记。注:整数包括自然数,所以自然数一定是整数,且一定是非负整数。但相减和自然数的基本要求相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不总是成立的。用以计量事物的件数或表示事物次序的数。即用数码,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数一个接一个,组成一个无穷集体。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为
3、了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论枣自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。(序数理论是意大利数学家G.皮亚诺提出来的。他总结了自然数的性质,用公理法给出自然数的如下定义) 自然数集N是指满足以下条件的集合:①N中有一个元素,记作1。②N中每一个元素都能在N中找到一个元素作为它的后继者。③1是0的后继者。④0不是任何元素的后继者。⑤不同元素有不同的后继者。⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。基数理论则把自然数定义为有限集的基数,这种理论
4、提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数。这样,所有单元素集{x},{y},{a},{b}等具有同一基数,记作1。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等。自然数的加法、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线,门牌号码,邮政编码等。自然数是整数(自然数包括正整数和零),但整数不全是自然数,
5、例如:-1-2-3......是整数而不是自然数。自然数是无限的。全体非负整数组成的集合称为非负整数集,即自然数集。)在数物体的时候,数出的1.2.3.4.5.6.7.8.9……叫自然数。自然数有数量、次序两层含义,分为基数、序数。基本单位:1计数单位:个、十、百、千、万、十万......总之,自然数就是指大于等于0的整数。当然,负数、小数、分数等就不算在其内了。严格定义这个命题被称为皮亚诺算术公理,该公理声明了自然数集的存在性。其中,第二条中声明的单射被称为后继映射,是我们生活中所习惯的“”。第三条则声称,存在一个数是自然数的起始点,它不是任何数的后继。第四条则是我们
6、所熟知的归纳假设,它使得在自然数集中数学归纳法的成立,也是对自然数集形态的一种限定。因为即使是有限集,也存在环形映射满足第二条(自单射),任何无限集都满足第二和第三条,而只有自然数集才能满足所有这四条的限定。由第四条,我们就可以使用数学归纳法:来证明自然数集中有关的命题。性质1.对自然数可以定义加法和乘法。其中,加法运算“+”定义为:a+0=a;a+S(x)=S(a+x),其中,S(x)表示x的后继者。如果我们将S(0)定义为符号“1”,那么b+1=b+S(0)=S(b+0)=S(b),即,“+1”运算可求得任意自然数的后继者。同理,乘法运算“×”定义为:a×0=0;a
7、×S(b)=a×b+a自然数的减法和除法可以由类似加法和乘法的逆的方式定义。2.有序性。自然数的有序性是指,自然数可以从0开始,不重复也不遗漏地排成一个数列:0,1,2,3,…这个数列叫自然数列。一个集合的元素如果能与自然数列或者自然数列的一部分建立一一对应,我们就说这个集合是可数的,否则就说它是不可数的。3.无限性。自然数集是一个无穷集合,自然数列可以无止境地写下去。对于无限集合来说“,元素个数”的概念已经不适用,用数个数的方法比较集合元素的多少只适用于有限集合。为了比较两个无限集合的元素的多少,集合论的创立者德国数学家康托尔引入了一一
此文档下载收益归作者所有