十九世纪前半世纪的法国数学家在大学毕业后当土木工程...

十九世纪前半世纪的法国数学家在大学毕业后当土木工程...

ID:5579333

大小:40.50 KB

页数:3页

时间:2017-12-19

十九世纪前半世纪的法国数学家在大学毕业后当土木工程..._第1页
十九世纪前半世纪的法国数学家在大学毕业后当土木工程..._第2页
十九世纪前半世纪的法国数学家在大学毕业后当土木工程..._第3页
资源描述:

《十九世纪前半世纪的法国数学家在大学毕业后当土木工程...》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、柯西  柯西(Cauchy,AugustinLouis 1789-1857),十九世纪前半世纪的法国数学家。在大学毕业后当土木工程师,因数学上的成就被推荐为科学院院士,同时任工科大学教授。后来在巴黎大学任教授,一直到逝世。他信仰罗马天主教,追随保皇党,终生坚守气节。他在学术上成果相当多,他的研究是多方面的。在代数学上,他有行列式论和群论的创始性的功绩;在理论物理学、光学、弹性理论等方面,也有显著的贡献。他的特长是在分析学方面,他对微积分给出了严密的基础。他还证明了复变函数论的主要定理以及在实变数和复变数的情况下

2、微分方程解的存在定理,这些都是很重要的。他的全集26卷,仅次于欧拉,居第二位。  柯西是历史上有数的大分析学家之一。幼年时在父亲的教导下学习数学。拉格朗日、拉普拉斯常和他的父亲交往,曾预言柯西日后必成大器。1805年柯西入理工科大学,1816年成为那里的教授。1830年法王查理十世被逐,路易。菲利普称帝。柯西由于拒绝作效忠宣誓,被革去职位,出走国外。  1838年柯西返回法国,法兰西学院给他提供了一个要职,但是宣誓的要求仍然成为接纳他的障碍。1848年路易。菲利普君主政体被推翻,成立了法兰西第二共和国,宣誓的规

3、定被废除,柯西终于成为理工科大学的教授。1852年发生政变,共和国又变成帝国,恢复了宣誓仪式,唯独柯西和阿拉果(D。Arago 1786-1853 法国物理学家)可以免除。  1821年,在拉普拉斯和泊松的鼓励下,柯西出版了《分析教程》、《无穷小计算讲义》、《无穷小计算在几何中的应用》这几部划时代的著作。他给出了分析学一系列基本概念的严格定义。柯西的极限定义至今还在普遍使用,连续、导数、微分、积分、无穷级数的和等概念也建立在较为坚实的基础上。  现今所谓的柯西定义或ε-δ方法是半个世纪后经过维尔斯特拉斯的加工才

4、完成的。柯西时代实数的严格理论还未建立起来,因此极限理论也就不可能完成。柯西在1821年提出ε方法(后来又改成δ),即所谓极限概念的算术化,把整个极限过程用一系列不等式来刻画,使无穷的运算化成一系列不等式的推导。后来维尔斯特拉斯将ε和δ联系起来,完成了ε-δ方法。柯西(2)柯西1789年8月2l日出生生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。   柯西在幼年时,他的父亲常带领他到法国参议

5、院内的办公室,并且在那里指导他进行学习,因此他有机会遇到参议员拉普拉斯和拉格朗日两位大数学家。他们对他的才能十分常识;拉格朗日认为他将来必定会成为大数学家,但建议他的父亲在他学好文科前不要学数学。   柯西于1802年入中学。在中学时,他的拉丁文和希腊文取得优异成绩,多次参加竞赛获奖;数学成绩也深受老师赞扬。他于1805年考入综合工科学校,在那里主要学习数学和力学;1807年考入桥梁公路学校,1810年以优异成绩毕业,前往瑟堡参加海港建设工程。   柯西去瑟堡时携带了拉格朗日的解析函数论和拉普拉斯的天体力学,后

6、来还陆续收到从巴黎寄出或从当地借得的一些数学书。他在业余时间悉心攻读有关数学各分支方面的书籍,从数论直到天文学方面。根据拉格朗日的建议,他进行了多面体的研究,并于1811及1812年向科学院提交了两篇论文,其中主要成果是:   (1)证明了凸正多面体只有五种(面数分别是4,6,8,l2,20),星形正多面体只有四种(面数是l2的三种,面数是20的一种)。   (2)得到了欧拉关于多面体的顶点、面和棱的个数关系式的另一证明并加以推广。   (3)证明了各面固定的多面体必然是固定的,从此可导出从未证明过的欧几里得的

7、一个定理。   这两篇论文在数学界造成了极大的影响。柯西在瑟堡由于工作劳累生病,于1812年回到巴黎他的父母家中休养。   柯西于18l3年在巴黎被任命为运河工程的工程师,他在巴黎休养和担任工程师期间,继续潜心研究数学并且参加学术活动。这一时期他的主要贡献是:   (1)研究代换理论,发表了代换理论和群论在历史上的基本论文。   (2)证明了费马关于多角形数的猜测,即任何正整数是个角形数的和。这一猜测当时已提出了一百多年,经过许多数学家研究,都没有能够解决。以上两项研究是柯西在瑟堡时开始进行的。   (3)用复

8、变函数的积分计算实积分,这是复变函数论中柯西积分定理的出发点。   (4)研究液体表面波的传播问题,得到流体力学中的一些经典结果,于1815年得法国科学院数学大奖。   以上突出成果的发表给柯西带来了很高的声誉,他成为当时一位国际上著名的青年数学家。   1815年法国拿破仑失败,波旁王朝复辟,路易十八当上了法王。柯西于1816年先后被任命为法国科学院院士和综合工科学校教授。1821年

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。