《平面向量的实际背景及基本概念》教案全面版.doc

《平面向量的实际背景及基本概念》教案全面版.doc

ID:55741767

大小:308.00 KB

页数:5页

时间:2020-03-04

《平面向量的实际背景及基本概念》教案全面版.doc_第1页
《平面向量的实际背景及基本概念》教案全面版.doc_第2页
《平面向量的实际背景及基本概念》教案全面版.doc_第3页
《平面向量的实际背景及基本概念》教案全面版.doc_第4页
《平面向量的实际背景及基本概念》教案全面版.doc_第5页
资源描述:

《《平面向量的实际背景及基本概念》教案全面版.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、《平面向量的实际背景及基本概念》教案三明九中:张智勇一、三维目标1、知识与技能(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示;(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并能弄清平行向量、相等向量、共线向量的关系(3)通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.2、过程与方法引导发现法与讨论相结合。这是向量的第一节课,概念与知识点较多,在对学生进行适当的引导之后,应让学生清清楚楚得明白其概念,这是学生进一步获取向量知识的前提;通过学

2、生主动地参与到课堂教学中,提高学生学习的积极性。体现了在老师的引导下,学生的的主体地位和作用。3、情感目标与价值观通过对向量与数量的比较,培养学生认识客观事物的数学本质的能力,并且意识到数学与现实生活是密不可分的,是源于生活,用于生活的。二、教学重点及难点1重点:向量的概念,相等向量的概念,向量的几何表示等2难点:向量的概念和共线向量的概念三、教学过程与操作设计环节内容设置师生互动创设情境力也是物理中常见的量,同样满足既有大小,又有方向,从以下四个图示进行说明(课件展示)从本章引言,我们知道位移是

3、既有大小,又有方向的量,可用有向线段表示。(*引申出有向线段的概念)具有方向的线段就叫做有向线段。有向线段的三要素:起点、方向、长度。思考:还能举出物理学中的这样的一些实例吗?从中归纳数学中向量的定义。情境设置符合学生的认知规律;从具体到抽象,从特殊到一般,从学生熟悉的经验和感兴趣的问题开始,从而顺利地将学生引导到向量的学习中来。生:观察、思考、总结、概括得出结论,并相互进行交流。1、向量定义:我们把既有大小又有方向的量叫向量设问:时间、路程、功是向量吗?速度与加速度呢?从而归纳出数量与向量的相关

4、概念:数量只有大小,是一个代数量;向量有方向,大小,双重性.2、向量的几何表示(类比实数的数轴表示并结合实例过渡到向量的几何表示)并类比得到数量的定义。让学生进一步体会到向量的方向性新课探究学习向量的几何表示:用有向线段表示;3、向量的相关概念(1)向量的字母表示:用字母a、b(黑体,印刷用)等表示,书写用,等;或用有向线段的起点与终点字母:等;(2)向量的大小就是有向线段的长度(或称模),记作

5、

6、;向量方向就是其有向线段的箭头指向。(3)零向量、单位向量概念:(从向量的大小方面过渡)①长度为0的

7、向量叫做零向量,记作。②长度等于1个单位的向量,叫做单位向量.4、平行向量定义(从向量的方向关系进行引入):①方向相同或相反的非零向量叫做平行向量;若向量,平行,记作∥②我们规定与任一向量平行,即都有∥.说明:综合①、②才是平行向量的完整定义;探究:“若∥,且∥,则∥”这个说法正确吗?(注意与直线平行传递性的区别)5、相等向量定义:长度相等且方向相同的向量叫做相等向量.说明:(1)若向量与相等,记作=;(2)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.(结合向量

8、与有向线段的构成要素进行说明,并用课件展示其生成过程)6、共线向量与平行向量关系:(课件展示)平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).探究:(1)平行向量可以在同一直线上吗?(注意与两平行线位置关系的区别)(2)共线向量可以相互平行吗?(注意与同在一直线上的线段位置关系的区别)类比有助于将学生认知进行迁移,顺利形成向量的知识。向量的几何表示BA记做或让学生独立思考,得到结论,加深对有向线段和向量的理解。组织学生进行思考、交流能根据向量的平行性质得出正

9、确的结论。例题研究例1、如图,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A地至B、C两地的位移解:表示A地至B地的位移,且≈____________表示A地至C地的位移,且≈____________例2判断:(1)平行向量是否一定方向相同?(2)不相等的向量是否一定不平行?(3)与零向量相等的向量必定是什么向量?(4)与任意向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零向量相等的应满足什么条件?(7)共线向量一定在同一直线上吗?

10、例3如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.解:(学生口答)变式一:与向量长度相等的向量有多少个?(11个)变式二:是否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?()巩固向量概念及其几何表示。让学生能够通过这些问题,弄清向量学习中比较容易混淆的几个基本概念让学生巩固相等向量与平行向量的概念。尝试1.判断下列命题是否正确,若不正确,请简述理由.(1)向量与是共线向量,则A、B、C、D四点必在一直线上;练习(2)单位

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。