六年级 第六讲 较复杂的行程问题.ppt

六年级 第六讲 较复杂的行程问题.ppt

ID:55726626

大小:2.66 MB

页数:12页

时间:2020-06-02

六年级 第六讲 较复杂的行程问题.ppt_第1页
六年级 第六讲 较复杂的行程问题.ppt_第2页
六年级 第六讲 较复杂的行程问题.ppt_第3页
六年级 第六讲 较复杂的行程问题.ppt_第4页
六年级 第六讲 较复杂的行程问题.ppt_第5页
资源描述:

《六年级 第六讲 较复杂的行程问题.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、学如逆水行舟,不进则退为什么逆水行舟,船不前进就会后退呢?逆水行舟与顺水行舟有什么区别呢?黄冈思维数学第六讲较复杂的行程问题例1一条大河上,下游有A、B两个码头,甲、乙两条船在静水中的速度相同,甲船从A码头顺水而下到B码头需要4小时,乙船从B码头逆流而上到A码头需要6小时。如果两条船分别从两个码头同时出发,相向而行,几小时可以相遇?回顾运动过程甲船从A到B需要4小时,每小时行全程的乙船从B到A需要6小时,每小时行全程的完全解题:1÷(+)=2.4(小时)小结流水行船中的相遇问题,要结合工程问题的思想,

2、将速度表示为每小时走全程的几分之几,再利用相遇问题的数量关系解决。两船从两地同时出发,相向而行。转化为相遇问题解决例2、一艘轮船在河流的两个码头之间航行,顺流需要6小时,逆流需要8小时,水流速度为2.5千米/时。求轮船在静水中的速度。回顾例1的解题方法,用分率表示速度顺流每小时行全程的逆流每小时行全程的顺流速度=船速+水速逆流速度=船速-水速船速:水速:已知条件水流速度每小时2.5千米且水速每小时行全程的:全程:(千米)船速:(千米/小时)答:船在静水中的速度是17.5千米/小时。例3、一艘轮船顺流航

3、行120千米,逆流航行80千米共用16小时,顺流航行60千米,逆流航行120千米共用16小时。求水流速度。分析与思考顺流行120千米+逆流行80千米用16小时顺流行60千米+逆流行120千米用16小时用时相等顺流少行60千米逆流多行40千米顺流行60千米与逆流行40千米用时相等即相同时间内,顺流与逆流航行的路程比为60:40=3:2顺流行120千米+逆流行80千米用16小时顺流行80÷2×3=120(千米)顺流行120+120=240(千米)用16小时顺流速度:240÷16=15(千米/小时)逆流行1

4、20÷3×2=80(千米)逆流行80+80=160(千米)用16小时逆流速度:160÷16=10(千米/小时)水流速度:(15-10)÷2=2.5(千米/小时)例4、长江沿岸有A、B两个码头,已知客船从A码头到B码头每天航行500千米,从B码头到A码头每天航行400千米。如果客舱在A、B两个码头间往返航行5次共用18天,那么这两个码头之间的距离是多少千米?分析与思考求两个码头之间的距离,已知从A到B每天航行500千米,从B到A每天航行400千米,只要求出从A到B的时间或从B到A的时间就可以求出距离。在

5、A、B两个码头间往返航行5次共用18天往返航行1次用18÷5=3.6(天)顺流与逆流的速度比为500:400=5:4路程相等,往返时间比为4:5则顺流行一次所用时间为3.6÷(4+5)×4=1.6(天)A、B之间距离为500×1.6=800(千米)课堂小结1、结合工程问题的思想,将速度表示为每小时走全程的几分之几,再来解决问题。2、流水行船问题中的基本数量关系:船速+水速=顺水速度船速-水速=逆水速度(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速谢谢观看!2020

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。