7.3.2多边形的内角和教案

7.3.2多边形的内角和教案

ID:5570417

大小:83.00 KB

页数:5页

时间:2017-12-19

7.3.2多边形的内角和教案_第1页
7.3.2多边形的内角和教案_第2页
7.3.2多边形的内角和教案_第3页
7.3.2多边形的内角和教案_第4页
7.3.2多边形的内角和教案_第5页
资源描述:

《7.3.2多边形的内角和教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、7.3.2多边形的内角和[教学目标]1.使学生了解多边形的内角、外角等概念.2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.[教学重点、难点]1.重点:(1)多边形的内角和公式.(2)多边形的外角和公式.2.难点:多边形的内角和定理的推导.[教学过程]一、探究1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?画一个任意的四边形,用量

2、角器量出它的四个内角,计算它们的和,与同伴交流你的结果.从中你得到什么结论?同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.二、思考几个问题1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?综上所述,你能得到多边形内角和公式吗?设

3、多边形的边数为n,则n边形的内角和等于(n一2)·180°.想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—

4、2)×180°=540°.如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°.分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去.∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.三、例题例1如果一个四边形的一组对角互补,那么另

5、一组对角有什么关系?已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.解:如图,四边形ABCD中,∠A+∠C=180°。∵∠A+∠B+∠C+∠D=(4-2)×360°=180°,∴∠B+∠D=360°-(∠A+∠C)=180°这就是说:如果四边形一组对角互补,那么另一组对角也互补.例2如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?已知:∠1,∠2,∠3,∠4,∠

6、5,∠6分别为六边形ABCDEF的外角.求:∠1+∠2+∠3+∠4+∠5+∠6的值.分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×180°.由于六边形的内角和为(6—2)×180°=720°.这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°.解:∵六边形的任何一个外角加上它相邻的内角和为180°.∴六边形的六个外角加上各自相邻内角的总和为6×180°.由于六边形的内角和为(6—2)×180°=720°∴它的外角和为6×180°一720°=360°如果把六边形横成n边形.(n为

7、不小于3的正整数)同样也可以得到其外角和等于360°.即多边形的外角和等于360°.所以我们说多边形的外角和与它的边数无关.对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°.如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.四、课堂练习课本P83-P84练习1、2、3题.P84第2、3题五、课堂小结引导学生总结本节课主要内容.六、课后作业课本P85第4、5、6题

8、.备选题:一、判断题.1.当多边形边数增加时,它的内角和也随着增加.()2.当多边形边数增加时.它的外角和也随着增加.()3.三角形的外角和与一多边形的外角和相等.()4.从n边形一个顶点出发,可以引出(n

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。