2011届高三数学二轮复习-专题6 第2讲椭圆、双曲线、抛物线.ppt

2011届高三数学二轮复习-专题6 第2讲椭圆、双曲线、抛物线.ppt

ID:55594016

大小:1.25 MB

页数:53页

时间:2020-05-20

2011届高三数学二轮复习-专题6 第2讲椭圆、双曲线、抛物线.ppt_第1页
2011届高三数学二轮复习-专题6 第2讲椭圆、双曲线、抛物线.ppt_第2页
2011届高三数学二轮复习-专题6 第2讲椭圆、双曲线、抛物线.ppt_第3页
2011届高三数学二轮复习-专题6 第2讲椭圆、双曲线、抛物线.ppt_第4页
2011届高三数学二轮复习-专题6 第2讲椭圆、双曲线、抛物线.ppt_第5页
资源描述:

《2011届高三数学二轮复习-专题6 第2讲椭圆、双曲线、抛物线.ppt》由会员上传分享,免费在线阅读,更多相关内容在PPT专区-天天文库

1、第2讲椭圆、双曲线、抛物线要点知识整合椭圆、双曲线、抛物线的定义及几何性质椭圆双曲线抛物线图像几何性质热点突破探究典例精析题型一圆锥曲线的定义例1【题后拓展】圆锥曲线的定义反映了它们的基本特征,理解定义是掌握其性质的基础.因此,对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求

2、PF1

3、+

4、PF2

5、>

6、F1F2

7、,双曲线的定义中要求

8、

9、PF1

10、-

11、PF2

12、

13、<

14、F1F2

15、.变式训练题型二圆锥曲线的几何性质例2【题后点评】(1)在求解有关离心率的问题时,一般并不是直接求出c和a的值,而是根据题目给出的椭圆或双曲线的几何特征,建立关于参数c、a、b的方程或不等式,

16、通过解方程或不等式求得离心率的值或范围.(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线.这里强调p的几何意义是焦点到准线的距离.变式训练2.(1)(2010年高考陕西卷)已知抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,则p的值为()A.B.1C.2D.4题型三圆锥曲线的最值或定值问题例3已知抛物线y2=4x的焦点为F,过F作两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.(1)求证:直线MN恒过定点;(2)求

17、MN

18、的最小值.【题后点评】解析几何中的最值问题涉及的知识面较广,解法灵活多样,但最常用

19、的方法有以下几种:(1)利用函数,尤其是二次函数求最值;(2)利用三角函数,尤其是正、余弦函数的有界性求最值;(3)利用不等式,尤其是均值不等式求最值;(4)利用数形结合,尤其是切线的性质求最值.变式训练3.(2009年高考辽宁卷)已知椭圆C经过点A(1,),两个焦点为(-1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.题型四圆锥曲线中的参数范围例4【题后点评】与圆锥曲线相关的参数问题是高考考查的热点问题,解决这类问题常用以下方法:(1)根据题意建立参数的不等关系式,通

20、过解不等式求出范围;(2)用其他变量表示该参数,建立函数关系,然后利用求值域的相关方法求解;(3)建立某变量的一元二次方程,利用判别式求该参数的范围;(4)研究该参数所对应的几何意义,利用数形结合法求解.变式训练题型五轨迹问题例5【题后点评】(1)求轨迹方程的常用方法:①直接法:将几何关系直接翻译成代数方程;②定义法:满足的条件恰适合某已知曲线的定义,用待定系数法解方程;③代入法:把所求动点的坐标与已知动点的坐标建立联系.(2)注意①建立关系要符合最优化原则;②求轨迹与“求轨迹方程”不同,轨迹通常指的是图形,而轨迹方程则是数学表达式.变式训练方法突破例【题后点评】本题利用了分类讨论

21、思想,由于△EOF为直角三角形,但未指明哪一个角,从而需要分类讨论.高考动态聚焦考情分析从近几年高考来看,本讲高考命题具有以下特点:1.圆锥曲线是高考中每年必考内容,是高考的重点和热点,选择题、填空题和解答题均有涉及,所占分数在12~18分.主要考查圆锥曲线的标准方程、几何性质等.2.由于新课标对此部分的考查增加了“理解数形结合思想”的要求,所以考查数形结合、等价转化、分类讨论等数学思想方法的问题有所加强.3.以向量为载体的解析几何问题已成为高考的重中之重,联系方程、不等式以及圆锥曲线的转化,题型灵活多样.真题聚焦3.(2010年高考重庆卷)已知过抛物线y2=4x的焦点F的直线交该

22、抛物线于A、B两点,

23、AF

24、=2,则

25、BF

26、=________.答案:2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。