欢迎来到天天文库
浏览记录
ID:55452506
大小:211.50 KB
页数:4页
时间:2020-05-13
《2017苏科版数学九年级上册期末练习题12.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、江苏省南京市溧水区孔镇中学九年级数学上学期练习题12(一)动手问题例1.将正方形纸片两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()(第1题)(第2题)例2.把一张长方形的纸片按如图所示的方式折叠,EM、FM为折痕,折叠后的C点落在B′M或B′M的延长线上,那么∠EMF的度数是()A.85°B.90°C.95°D.100°例3.(河南省)如图(1)所示,用形状相同、大小不等的三块直角三角形木板,恰好能拼成如图(2)所示的四边形ABCD,若AE=4,CE=3BF,那么这个四边形的面积是___________.
2、(二)证明问题例4.(浙江省)如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图3至图6中统一用F表示)(图1)(图2)(图3)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决。(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE
3、于点G,请你求出线段FG的长度;(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH﹦DH(图4)(图5)(图6)解:(三)探索性问题例5.(青岛)提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=AD时(如图②):∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.∵PD=AD-AP=AD,△CDP和△CDA的高相等,∴S△C
4、DP=S△CDA.∴S△PBC=S四边形ABCD-S△ABP-S△CDP=S四边形ABCD-S△ABD-S△CDA=S四边形ABCD-(S四边形ABCD-S△DBC)-(S四边形ABCD-S△ABC)=S△DBC+S△ABC.(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为:________________;(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求
5、解过程;问题解决:当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:___________.三、巩固训练1.(福州)如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3)。按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是()A.都是等腰梯形B.都是等边三角形C.两个直角三角形,一个等腰三角形D.两个直角三角形,一个等腰梯形2.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、An分别是正方形的中心,则n个这样的
6、正方形重叠部分的面积和为()A.cm2B.cm2C.cm2D.cm2(第18题)A1A2A3A43.右图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是.4.(连云港市)如图1,点将线段分成两部分,如果,那么称点为线段的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线将一个面积为的图形分成两部分,这两部分的面积分别为,,如果,那么称直线为该图形的黄金分割线.(1)研究小组猜想:在中,若点为边上的黄金分割点(如图2),则
7、直线是的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点任作一条直线交于点,再过点作直线,交于点,连接(如图3),则直线也是的黄金分割线.请你说明理由.(4)如图4,点是的边的黄金分割点,过点作,交于点,显然直线是的黄金分割线.请你画一条的黄金分割线,使它不经过各边黄金分割点.ACB图1ADB图2CADB图3CFEFCBDEA图4(第4题图)
此文档下载收益归作者所有