欢迎来到天天文库
浏览记录
ID:55448800
大小:1.13 MB
页数:10页
时间:2020-05-13
《甘肃省天水一中2020届高三数学上学期第五次期末考试试题文.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、甘肃省天水一中2020届高三数学上学期第五次(期末)考试试题文一、单选题:(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若,则()A.B.C.D.2.设集合,,则()A.B.C.D.3.下列函数中,其定义域和值域分别与函数的定义域和值域相同的是()A.B.C.D.4.已知向量,,则在方向上的投影为()A.2B.-2C.D.5.在区间上随机取一个数,则直线与圆有两个不同公共点的概率为()A.B.C.D.6.函数的图象大致为()A.B.C.D.-10-7.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A
2、.B.C.D.8.设实数满足,则的最大值是()A.-1B.C.1D.9.△ABC的内角A、B、C的对边分别为a、b、c.已知,a=2,c=,则C=()A.B.C.D.10.在正方体中,为棱的中点,则异面直线与所成角的正切值为()A.B.C.D.11.设抛物线的焦点为,准线为,点在上,点在上,且,若,则的值()A.B.2C.D.312.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为()A.B.C.D.二、填空题:(本大题共4小题,每小题5分,共20分.)13.已知l,m是平面外的两条不同直线.给出下列三个论断:①l⊥m;②m∥;③l⊥.以其
3、中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.(用序号作答)14.设为锐角,若,则的值为_______.15.天气预报说,在今后的三天中,每一天下雨的慨率均为-10-.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生到之间取整数值的随机数,用表示下雨,用表示不下雨,再以每三个随机数作为一组,代表这三天的下雨情况,经随机模拟试验产生了如下组随机数:据此估计,这三天中恰有两天下雨的概率近似为__________.16.已知函数,其中为自然对数的底数,若函数与的图像恰有一个公共点,则实数的取值范围是______.三
4、、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列满足,,其中为的前项和,.(Ⅰ)求;(Ⅱ)若数列满足,求的值.18.如图,在四棱锥中,底面为矩形,平面平面,,,、分别为、的中点.(Ⅰ)求证:;(Ⅱ)求证:平面平面;(Ⅲ)求证:平面.19.经过多年的努力,天水市秦安县白凤桃在国内乃至国际上逐渐打开了销路,成为部分农民脱贫致富的好产品.为了更好地销售,现从某村的白凤桃树上随机摘下了100个白凤桃进行测重,其质量分布在区间内(单位:克),统计质量的数据作出其频率分布直方图如图所示:-10-(Ⅰ)按分层抽样的方法从质量落在,的白凤桃中随
5、机抽取5个,再从这5个白凤桃中随机抽2个,求这2个白凤桃质量至少有一个不小于400克的概率;(Ⅱ)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的白凤桃树上大约还有100000个白凤桃待出售,某电商提出两种收购方案:A.所有白凤桃均以20元/千克收购;B.低于350克的白凤桃以5元/个收购,高于或等于350克的以9元/个收购.请你通过计算为该村选择收益最好的方案.(参考数据:)20.已知椭圆的右焦点为,且经过点.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为原点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若
6、OM
7、·
8、ON
9、
10、=2,求证:直线l经过定点.21.设函数,.(Ⅰ)若曲线在点处的切线与轴平行,求;(Ⅱ)当时,函数的图象恒在轴上方,求的最大值.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B铅笔在答题卡上,将所选题号对应的方框涂黑.-10-22.在平面直角坐标系中,曲线的参数标方程为(其中为参数,且),在以为极点、轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线的极坐标方程为.(Ⅰ)求曲线的极坐标方程;(Ⅱ)求直线与曲线的公共点的极坐标.23.已知.(Ⅰ)当时,求不等式的解集;(Ⅱ)若时不等式成立,求的取
11、值范围.天水市一中2020届2019—2020学年度第一学期第五次(期末)考试文科数学试卷(答案)一、选择题(12*5=60分)1.D2.A3.D4.B5.D6.A7.D8.D9.B10.C11.D12.B11.详解:过M向准线l作垂线,垂足为M′,根据已知条件,结合抛物线的定义得==,又∴
12、MM′
13、=4,又
14、FF′
15、=6,∴==,.-10-12.详解:如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有二、填空题(4*5=20分)13.答案1:若②③,则
此文档下载收益归作者所有