资源描述:
《2016届高三第2章函数第5讲.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二章 函数、基本初等函数第5讲 指数与指数函数基础巩固题组(建议用时:40分钟)一、填空题1.(a>0)的值是________.2.函数y=ax-a(a>0,且a≠1)的图象恒过点________.解析 当x=1时,y=0,故函数y=ax-a(a>0,且a≠1)的图象必过点(1,0).答案 (1,0)3.若x=log43,则(2x-2-x)2=________.解析 由x=log43,得4x=3,即2x=,2-x=,所以(2x-2-x)2=2=.答案 4.函数f(x)=ax(a>0,a≠1)在[1,2]
2、中的最大值比最小值大,则a的值为________.解析 当0<a<1时,a-a2=,∴a=或a=0(舍去).当a>1时,a2-a=,∴a=或a=0(舍去).综上所述,a=或.答案 或5.(2014·南通模拟)设a=()1.4,,c=ln,则a,b,c的大小关系是________.答案 b>a>c6.(2014·东北三校联考)函数f(x)=ax-1(a>0,a≠1)的图象恒过点A,给出下列函数:①y=;②y=
3、x-2
4、;③y=2x-1;④y=log2(2x).其中图象不经过点A的是________(填序号)
5、.解析 f(x)=ax-1(a>0,a≠1)的图象恒过点(1,1),又由0=知(1,1)不在函数y=的图象上.答案 ①7.若函数f(x)=a
6、2x-4
7、(a>0,a≠1),满足f(1)=,则f(x)在(-∞,2]上单调递________(填“增”、“减”).解析 由f(1)=得a2=,∴a=或a=-(舍去),即f(x)=
8、2x-4
9、.由于y=
10、2x-4
11、在(-∞,2]上递减,在[2,+∞)上递增,所以f(x)在(-∞,2]上递增,在[2,+∞)上递减.答案 增8.已知函数f(x)=a-x(a>0,且a≠1
12、),且f(-2)>f(-3),则a的取值范围是________.解析 因为f(x)=a-x=x,且f(-2)>f(-3),所以函数f(x)在定义域上单调递增,所以>1,解得0<a<1.答案 (0,1)二、解答题9.求下列函数的定义域、值域及单调性.解 (1)函数的定义域为R,令u=6+x-2x2,则y=u.∵二次函数u=6+x-2x2=-22+,又∵二次函数u=6+x-2x2的对称轴为x=,在上u=6+x-2x2是减函数,在上是增函数,又函数y=u是减函数,在上是增函数,在上是减函数.(2)定义域为R.∵
13、
14、x
15、≥0,∴y=-
16、x
17、=
18、x
19、≥0=1.故y=-
20、x
21、的值域为{y
22、y≥1}.又∵y=-
23、x
24、是偶函数,且y=-
25、x
26、=所以函数y=-
27、x
28、在(-∞,0]上是减函数,在[0,+∞)上是增函数.(此题可借助图象思考)10.已知f(x)是定义在实数集R上的奇函数,且当x∈(0,1)时,f(x)=.(1)求函数f(x)在(-1,1)上的解析式;(2)判断f(x)在(0,1)上的单调性.解 (1)∵f(x)是x∈R上的奇函数,∴f(0)=0.设x∈(-1,0),则-x∈(0,1).f(-x)===-f(x),
29、∴f(x)=-,∴f(x)=(2)设0<x1<x2<1,f(x1)-f(x2)==,∵0<x1<x2<1,∴2x1<2x2,2x1+x2>20=1,∴f(x1)-f(x2)>0,∴f(x)在(0,1)上为减函数.能力提升题组(建议用时:25分钟)1.函数y=ax-b(a>0且a≠1)的图象经过第二、三、四象限,则ab的取值范围为________(填序号).①(1,+∞);②(0,+∞);③(0,1).解析 函数经过第二、三、四象限,所以函数单调递减且图象与y轴的交点在负半轴上.而当x=0时,y=a0-b=
30、1-b,由题意得解得所以ab∈(0,1).答案 ③2.若关于x的方程
31、ax-1
32、=2a(a>0且a≠1)有两个不等实根,则a的取值范围是________.解析 方程
33、ax-1
34、=2a(a>0且a≠1)有两个实数根转化为函数y=
35、ax-1
36、与y=2a有两个交点.①当0<a<1时,如图(1),∴0<2a<1,即0<a<.②当a>1时,如图(2),而y=2a>1不符合要求.综上,0<a<.答案 3.当x∈[-2,2]时,ax<2(a>0,且a≠1),则实数a的范围是________.解析 x∈[-2,2]时,a
37、x<2(a>0,且a≠1),若a>1,y=ax是一个增函数,则有a2<2,可得-或a<-,故有