资源描述:
《全等三角形(常见辅助线).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、ABDEFMN专题讲解——三角形辅助线的方法∟∟初中几何常见辅助线作法口诀人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。连线法第一关如图,AB=AD,BC=DC,求证:∠B=∠D.ACBD连接AC构造全等三角形连线构造全等连线构造全等如图,AB与CD交于O,且AB=CD,AD=BC,OB=5cm,求OD的长.连接BD构造全等三角形ACBDO第二关角平分线性质如图,△ABC中,∠C=90o,BC=10,BD=6,AD平分∠BAC,求点D到AB的距离.过点D作DE⊥AB于点EACDBE角平分线上的点
2、向角两边做垂线段PD=PE.PD=PE如图,OC平分∠AOB,角平分线上点向两边作垂线段过点P作PF⊥OA,PG⊥OB垂足为点F,点GFGACDBEPO∠DOE+∠DPE=180°∠DOE+∠DPE=180°∟∟求证:证明:例1已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°DABCM作DM⊥BC于M,DN⊥BA交BA的延长线于N。∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)∵DN⊥BA,DM⊥BC(已知)∴∠N=∠DMB=90°(垂直的定义)在△NBD和△MBD中∵∠N=∠DM
3、B(已证)∠1=∠2(已证)BD=BD(公共边)∴△NBD≌△MBD(A.A.S)12∴∠4=∠C(全等三角形的对应角相等)N43321*∴ND=MD(全等三角形的对应边相等)∵DN⊥BA,DM⊥BC(已知)∴△NAD和△MCD是Rt△在Rt△NAD和Rt△MCD中∵ND=MD(已证)AD=CD(已知)∴Rt△NAD≌Rt△MCD(H.L)∵∠3+∠4=180°(平角定义),∠A=∠3(已证)∴∠A+∠C=180°(等量代换)第三关中垂线法△ABC中,AB>AC,∠A的平分线与BC的垂直平分线DM相交于D,过D作DE⊥AB于E,作DF⊥AC于F
4、。求证:BE=CFABCDEFM连接DB,DC垂直平分线上点向两端连线段∟如图,已知三角形ABC中,BC边上的垂直平分线DE与角BAC的平分线交于点E,EF垂直AB交AB的延长线于点F,EG垂直AC交AC于点G。求证:(1)BF=CG(2)判定AB+AC与AF的关系第四关截长补短法已知在△ABC中,∠C=2∠B,∠1=∠2求证:AB=AC+CDADBCE12在AB上取点E使得AE=AC,连接DE截长F在AC的延长线上取点F使得CF=CD,连接DF补短A1BCD234如图所示,已知AD∥BC,∠1=∠2,∠3=∠4,直线DC经过点E交AD于点D,
5、交BC于点C。求证:AD+BC=ABEF在AB上取点F使得AF=AD,连接EF截长补短证明:例1已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°DABCE在BC上截取BE,使BE=AB,连结DE。∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)在△ABD和△EBD中∵AB=EB(已知)∠1=∠2(已证)BD=BD(公共边)∴△ABD≌△EBD(S.A.S)1243∵∠3+∠4=180°(平角定义),∠A=∠3(已证)∴∠A+∠C=180°(等量代换)321*∴∠A=∠3(全等三角形的
6、对应角相等)∵AD=CD(已知),AD=DE(已证)∴DE=DC(等量代换)∴∠4=∠C(等边对等角)AD=DE(全等三角形的对应边相等)证明:例1已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°DABCF延长BA到F,使BF=BC,连结DF。∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)在△BFD和△BCD中∵BF=BC(已知)∠1=∠2(已证)BD=BD(公共边)∴△BFD≌△BCD(S.A.S)1243∵∠F=∠C(已证)∴∠4=∠C(等量代换)321*∴∠F=∠C(全等三角
7、形的对应角相等)∵AD=CD(已知),DF=DC(已证)∴DF=AD(等量代换)∴∠4=∠F(等边对等角)∵∠3+∠4=180°(平角定义)∴∠A+∠C=180°(等量代换)DF=DC(全等三角形的对应边相等)练习1如图,已知△ABC中,AD是∠BAC的角平分线,AB=AC+CD,求证:∠C=2∠BABCDE1221证明:在AB上截取AE,使AE=AC,连结DE。∵AD是∠BAC的角平分线(已知)∴∠1=∠2(角平分线定义)在△AED和△ACD中∵AE=AC(已知)∠1=∠2(已证)AD=AD(公共边)∴△AED≌△ACD(S.A.S)3∴∠B
8、=∠4(等边对等角)4*∴∠C=∠3(全等三角形的对应角相等)又∵AB=AC+CD=AE+EB(已知)∴EB=DC=ED(等量代换)∵∠3=∠B+∠4